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Lecture #1:  Course Introduction 
 

Almost all of the statistical analysis we’ll be doing in this course will be based on 
the Class Data Base, which is a spreadsheet with answers to the Student Survey you’re 
going to fill out.  If your survey is randomly selected, you will have a line in the 
spreadsheet for your answers. 

 
In addition to getting information for our data base, your job today is to get 

acquainted with certain words which are used to describe the variables that I’ll be asking 
about.  Variables in this sense mean things that can vary from person to person.  For 
instance, some of you are male, and some of you are female.  Sex is a variable.  So are 
ZIP code, attitude toward taking math classes, and height.  And these variables have 
characteristics which we describe with special words that I’ll be using all semester. 

 
So even though you’re pretty sure you know the answers to these questions, I’m 

going to give a little spiel about how each should be answered, using the special words.  
Feel free to make notes on your Student Survey sheet; you’ll get it back after I compile 
the data. 

 
 
Here’s the first question: 
 

What sex are you (M or F)? 
This seems simple enough.  Your response should be either an M or an F.  We 

call this kind of variable binomial – two names, like the yx +  of algebra.  It’s true that 
some people prefer to be thought of as being neither male nor female, or being both male 
and female, but for the purposes of this survey I’m asking you to make a choice.  And the 
thing about binomial variables is that the only way we can analyze them is to say what 
fraction of the group is in each category.  We can’t find the “average” of the genders – 
the very idea sounds silly.  We can only say that ~~% of the group is male, and ~~% of 
the group is female. 

 
In addition to being binomial, sex is also a categorical or qualitative, as opposed 

to a quantitative, variable.  In other words male and female are categories and qualities, 
not numbers.  It’s true that we could artificially assign numbers to them – call being male 
#1 and being female #2 or vice versa, but these numbers would be meaningless. 

 
You probably didn’t think there was so much to say about such a straightforward 

question.  Statistics is a very wordy subject! 
 
 

 Here’s the next question: 
 

Are you a native of Mendocino or Lake County? 
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The answer I’m looking for is a Yes or a No.  So this is also a categorical, 
binomial variable, though the categories are different than those for the question about 
what sex you are.  I’m considering the two-county area to be a single entity.  Don’t put 
down which county you were born in of the two.  (Don’t worry if you already did, 
though; I’ll take it as a Yes.) 

 
How about this situation:  Your parents live in Ukiah.  One morning your mother 

wakes up and notices that she’s gone into labor.  Her obstetrician or midwife is in Santa 
Rosa.  She goes to Santa Rosa, and while she’s there you are born.  The next day or so 
you and she come back to Ukiah and you begin your childhood.  Are you a native of 
Mendocino or Lake County?  I’m not sure.  This is one of many cases that illustrate the 
phrase I once saw on a T-shirt:  Statistics is never having to say you’re certain.  If this or 
a similar story describes your birth, you’ll have to make your own decision.  There’s not 
a whole lot at stake here, so do what you wish. 

 
 
Are you a graduate of a Mendocino or Lake County high school? 
Another qualitative, binomial variable, with possible answers Yes and No.  

Nothing new here.  But there are a couple of dicey cases.  What if you’re still in high 
school in Mendocino or Lake County?  It’s not like you went to some out-of-area high 
school and then came to Mendocino College.  You’re probably going to graduate, given 
that you’re already taking college-level classes.  Or how about if you got a GED?  Or you 
were home-schooled?  In all these cases you should answer the way that feels right to 
you.  If you despise the very idea of high school, say No.  Otherwise, you might as well 
say Yes, because to me you are a local student, and that’s what this question is getting at. 

 
 
Now here’s something new: 
 
What is your favorite color? 
Obviously there are more than two answers to this question, so instead of being 

binomial, favorite color is what is called a multinomial variable – many names.  But it is 
still a categorical variable, not a numerical or quantitative one.  I suppose you could give 
it as a wavelength, but that isn’t practical.  You’re allowed only one favorite color, so 
don’t put down “blue or green” or something like that.  You have to choose.  But you can 
give it as many descriptive adjectives as you like.  My favorite all time was Blood-and-
Guts Red.  Very vivid.  Some people don’t have a favorite color; they don’t really care.  
If you’re one of those, leave this question blank.  We’re not forcing you to pick.  Or what 
if you like two or more colors equally and can’t bring yourself to insult one or more by 
picking a favorite?  Leave it blank.  These are two very different ways of not having a 
favorite color, but they will look the same in our survey. 

 
Just like with the first question, we’ll be able to analyze the data only by giving 

the percent of the group which picked each color.  There will be more than two percents 
needed, but we won’t be able to give an “average” favorite color. 
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And here at last is a number: 
 
What is your ZIP code? 
Your answer should be a five-digit number.  If you’ve just come here from 

somewhere else, give your ZIP code here.  Most likely it will be 954--.   
 
We didn’t use to have ZIP codes.  You’d just write the address, the name of the 

city or town, and the state.  Large cities did have something called zones, so you’d write, 
for instance, New York 9, New York.  Then in 1963 the Zoning Improvement Plan went 
into effect, and every location in the United States was assigned a ZIP code.   

 
But even though the ZIP code is a number, it doesn’t act like a number.  You 

can’t give an average ZIP code for a group; that makes no sense.  You can’t compare ZIP 
codes for size.  People from Willits cannot claim they’re better than people from Ukiah 
because their ZIP code (95490) is 8 bigger than Ukiah’s (95482).  Then how are they 
assigned?  Well, each area is given three digits (954 in our case), and these are arranged 
geographically.  But within each such group the final two digits are assigned 
alphabetically:  Boonville, 95415; Lakeport, 95456; Potter Valley, 95469; Redwood 
Valley, 95470, etc., with little gaps allowed for future towns perhaps. 

 
So again the only way to analyze a set of ZIP codes is by saying what percent of 

the group has each ZIP code.  You could say then that ZIP code is a multinomial, 
categorical variable.  But there is something numerical about ZIP codes; they are, after 
all, numbers, so you could also say that ZIP codes are a quantitative variable, but at the 
very lowest rung on a ladder which we call levels of measurement.  This first level is the 
nominal level, meaning that the number is really only being used as a name.  We’ll be 
going up through these levels for the rest of the survey. 

 
The next level is represented by these questions: 
 

 Which statement best characterizes your attitude towards taking math 
classes? 

1) If I never have to take another math class it will be too soon. 
2) I would prefer not to take a math class. 
3) I can take them or leave them. 
4) I enjoy math classes. 
5) I adore taking math; it’s my favorite thing to study. 
 

 Which statement best characterizes your attitude towards social media 
(Facebook, Snapchat, Instagram, Twitter, etc.)? 
 1) I never use social media and can’t stand them. 
            2) I seldom use social media. 
            3) I can take them or leave them. 
            4) I enjoy social media. 
            5) I love using social media; I can’t get through the day without them. 
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Please pick one number to answer each question; don’t, say, circle the 3 and the 4.  
Pity the poor person compiling the surveys; don’t make me choose. 

Now, these answers are unquestionably numbers, and they function as numbers in 
many ways.  Yes, you could say that the name of your attitude toward math classes is 5, 
or 1, but that loses the richness of the response.  Answering with a 5 means you have a 
very positive attitude about the subject; 1 a very negative one.  There is an order to the 
responses; the larger the number the more positive the response.  We call this the ordinal 
level of measurement for this reason.  Analyzing a set of responses we might give the 
percents for each answer, but we might also pool the 5’s and the 4’s as those with 
positive attitudes, or the 1’s and 2’s as those with negative attitudes, or even the 3’s, 4’s 
and 5’s as those who don’t have negative attitudes, and so on.  We can rank the attitudes 
in a way that makes sense, hence the name ordinal.   

 
But surely some characteristics of numbers are lacking here.  For instance, we 

can’t say that a person who answers with a 5 is more positive than a person who answers 
with a 4 to the same extent that a person who answers with a 4 is more positive than a 
person who answers with a 3.  In other words, we can’t make inferences about the 
differences between the responses, only their rank.  And it would be ridiculous to assert 
that a person answering 4 is twice as positive as a person answering 2.  These sorts of 
numerical characteristics belong to the remaining, higher levels of measurement.  

 
 Next question: 
 

If you own a car, what year is it? 
You should either leave this question blank, if you don’t own a car, or put in a 

four-digit number starting with either 19 or 20.  No fractions (though I did once own a 
1988½ Ford!).  What if you own two cars, or a car and a truck?  Pick one and give its 
year.  The other won’t know it’s being slighted.   

 
The year your car was made is definitely a number, and the newer the car the 

bigger the number, so this variable is ordinal, but it’s also something more.  A car made 
in 2003 is 3 years newer than a car made in 2000, and a car made in 2006 is also 3 years 
newer than a car made in 2003, so the differences between years have significance.  We 
call these differences intervals, and so year of car is at the interval level of 
measurement.  That means we can reasonably say how much newer or older one car is 
than another.  But, although we can say that a certain car is half as old as another, or 
twice as old, we can’t do so using the years the cars were made without subtracting them 
from the current year.  If cars had been made in the year 1000, we couldn’t say that such 
a car is twice as old as a car made in the year 2000. 

 
How about this question: 
 
What size shoes do you wear? 
I know that sizes vary and that men’s sizes are different from women’s sizes (a 

man’s 6, I believe, is the same actual size as a woman’s 7½, on the whole) and also that 
there are different size systems in different parts of the world (a man’s 6 in the United 
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States would be a 38 in Europe, for instance).  Then there’s the fact that the sizes go up to 
13 ½ for children and then start all over again at 1 for larger feet.  However, for the 
purposes of this survey, just put down one whole number, or a whole number followed by 
½, and leave it at that.  No need to say if it’s a man’s or a woman’s size; you’ve already 
stated your sex.  Plus, I’ve found analyzing these numbers later in the semester goes just 
as smoothly if we ignore the gender of the shoe size. 

 
Shoe size is definitely a number, definitely ordinal (10 is bigger than 8, 8 is bigger 

than 6), and definitely at the interval level of measurement.  Size 10 is the same amount 
bigger than 8 as 8 is bigger than 6.  In fact, each size bigger is supposed to be ¼ inch 
longer.  A woman’s 6 is 9¼ inches in length, a 7, 9½.  Why don’t they just use actual 
lengths instead of these crazy sizes??  Well, you’d still have to decide between inches and 
centimeters, in which a 6 is 23.5 cm and a 7 is 24.1 cm.  Korea seems to have the idea – 
the size is given as the actual length of the shoe in millimeters!  (See 
http://www.i18nguy.com/l10n/shoes.html#adult for the full story.) 

 
So shoe sizes in our system still lack that last, most sophisticated property of 

numbers – the ability to say that one size is twice as big as another (the size might be, but 
the shoes aren’t).  But we get that property with the next question: 

 
How old did you turn on your last birthday? 
You’ll want to put down a whole number here.  Notice I didn’t ask how old you 

are.  Some people might answer, 20 and 4 months, or 22½ , or, in the manner of children 
eager to be accorded their full measure of maturity, 19 7/12.   

 
Age on last birthday is certainly a variable at the ordinal level of measurement, 

showing that one person is older than another, and certainly a variable at the interval level 
of measurement, enabling us to talk meaningfully about the difference in age of two 
people, but it’s something else also.  We can say that one person is twice as old as 
another, say if one is 36 and one is 18.  We can talk about the ratio of their ages as 2:1.  
So this variable is at the ratio level of measurement, and that’s the highest you can get.  
You can also talk meaningfully about an age of 0, though few people do, although my 
children used to refer to babies before their first birthday as being 0.   

 
But something else is going on here too.  You were asked to round your age to 

the nearest whole number.  In fact you were asked to round your age down to the nearest 
whole number (though if you have a birthday in the next week it would be okay to put 
your new age).  And that’s because you don’t count your age, you measure it.  This is a 
fundamental distinction between different uses of numbers for different variables.  Some 
variables are measured, like age, or height, as you’ll see below, and some are counted.  
When you measure a variable, you always have to determine how fine a measurement to 
use.  You could give your age to the nearest year, or month, or week, or day, or hour, or 
minute, or second or even nanosecond.  We say that age is a continuous variable, 
meaning that it could be measured to any degree of fineness, so to avoid people 
measuring to different degrees, I asked you to round down to the nearest whole number.  
Only variables which are measured are continuous. 
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Here’s another measured, continuous variable at the ratio level: 
 
What is your height to the nearest inch? 
If you wrote 5’6”, kindly convert that to inches ( 666512 =+× inches).  How 

annoying that a foot has 12, not 10 inches, which would certainly simplify the 
calculation!  And if you wrote down a height ending in ½, round it up or down as you 
please.   

 
Even though your height wouldn’t continually have to be changed if a finer 

measurement were asked for, as in the case of age discussed above, all the other 
considerations would apply, so I specified where to round to keep the responses all 
having the same format.   

 
And the final question: 
 
How many pets do you have? 
What’s a pet?  How about that goat?  Is it a pet, or a farm animal?  It’s up to you.  

How about pets that belong to your whole family, not just you?  It’s also up to you 
whether to include them or not (but no siblings, please – they are not pets).  And those 
guppies?  Hard to tell how many of them there are at any time, but, again, your decision. 

 
So clearly I’m expecting a whole number here, and 0 is a perfectly fine one.  

Don’t put down “None.”  In that case you have a number of pets, and that number is 0. 
 
You can see that number of pets is at the ratio level of measurement – you can 

have twice as many pets as someone else, and you can have 0 pets. 
 
But what you can’t have is 4 ½ pets, or anything ending in a fraction.  And that’s 

because you don’t measure your pets (at least not to find out how many you have).  You 
count them.  Number of pets is a variable which is counted, and we call that kind 
discrete.  This isn’t the kind of discreet that describes people who are good at keeping 
secrets – note the different spelling.  This kind of discrete has the same ending as 
“concrete,” which is derived from Latin words meaning “growing together,” and the 
“crete” is the growing part, so discrete meaning growing apart.  In other words, discrete 
numbers have gaps between them.  You can have 2 pets, or 3 pets, but no number of pets 
between those two numbers.   

 
Okay, you’ve done the survey.  And you’ve encountered a lot of the basic words 

we used in descriptive statistics, which is the part of statistics, obviously, in which we 
describe things.  I wish that language were neat enough to make a nice flow chart of 
these words in a well-defined order, but language isn’t like that.  Concepts overlap and 
intertwine.   

 
Next class we’ll go over all these words again, and some others too.
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Lecture  #2:  What Is Statistics Anyway? 
 

Perhaps somebody will ask you this semester, “What is statistics, anyway?”  It’s 
good to have an answer, if only to shut them up.  Here’s one from the PBS Parents 
website (http://www.pbs.org/parents/earlymath/resources4.html):  Statistics is the 
mathematics of collecting and analyzing data to draw conclusions and make predictions.  
Good enough. 

 
Be sure to distinguish this meaning from the common usage of the word statistics 

in our society, typified by the sports pages with their small-type “stats.”  They are a form 
of statistics, but only a very small part of what we’re doing in this course.  They’re also a 
plural noun – we might say that someone’s stats are good – but when we use the word to 
describe a field of study, oddly enough, it’s singular.  See the definition above.  It’s no 
coincidence that the word shares its first four letters with the word “state,” because it was 
first used in connection with data gathered by the state, a general term for an 
independently-governed unit.  I can imagine that the chief use was information gathered 
for purposes of taxation, representation, and the like.  

 
As you saw in the last lecture, the way we practice statistics is by gathering 

information about a variable, which is something that can take on different values – let’s 
just say something that can vary. (When they’re numbers they’re often referred to as 
random variables in the context of statistics.) And a value that a variable does take on in 
a certain person or whatever we’re studying is called a datum, Latin for “given.”  Datum 
is a singular word, and the plural is data, which is a little confusing since we’re so used 
to the Spanish ending -a being singular.  It even sounds a little funny when we say, “The 
data show…” or, “The data do…,” but it’s correct. 

 
If we collect data on a variable, we call that collection a data set. 

 
Descriptive and Inferential Statistics 

There are two parts to this course, with a small bridge-like part in between.  The 
first part is about descriptive statistics, in which we develop ways to describe data sets.  

 
 But we’re interested in more than just what is, and what data we’ve been able to 

gather.  We want to draw conclusions and make predictions in general, not just talk about 
what we’ve found out.  Yes, 460 of the 1000 people we asked said they’re going to vote 
for Candidate X, but can we say that she has 46% of the entire vote committed to her?  
The data set consisting of the 1000 yes’s and no’s that we collected is called a sample, 
and any number that describes this sample (for instance that 46% are yes’s) is called a 
statistic (singular).   

 
Now probability comes in.  It’s the “bridge” I described above.  We calculate 

how likely it is that, assuming we didn’t ask our question at the headquarters of 
Candidate X’s campaign, or that of her opponent, the entire electorate that turns out to 
vote will give 46% to her, or close to that, and if so, how close can we expect?  
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Probability, which is the study of the likelihood of events, is the tool used to make 
the transition from descriptive to inferential statistics.  An inference is a conclusion that 
you draw from information you receive.  Inferential statistics takes information from the 
sample, in particular its statistics, in the above sense of the word as the plural of statistic, 
and applies it to the population, which is the entire potential collection of yes’s and no’s, 
to make guesses about the numbers which describe the population, which are called 
parameters.  Again, this isn’t exactly how we use that word in everyday conversation, if 
it comes up, but this is the specialized vocabulary of statistics.   

 
It’s easy:  Samples have Statistics; Populations have Parameters.  And though you 

may well want to say that they’re equal, as in the case of our 46%, they have totally 
different significances:  the former is reality, the latter a guess. 
 
Variables 

Now we’ll discuss briefly the ways that variables are classified, and many of these 
ways should sound familiar from the last class. 

 
First, there’s the qualitative/quantitative distinction.  Some variables are 

characteristics – not numbers anyway – and some are numbers.  Qualitative variables are 
also called categorical because the data fall into categories. 

 
If a variable is quantitative, it can be at one of four possible levels of 

measurement.  The lowest level is the nominal, where the number is simply a name.  
Last time we had ZIP codes.  There’s also bus route numbers, Social Security numbers, 
phone numbers, etc.  Next comes the ordinal level, where numbers can be ranked.  
Attitudes toward math and social media were used last class; further examples are 
numbers of stars in restaurant or movie reviews and ranking of tennis players or golfers, 
to name a few. 

 
The interval level may be the hardest to understand.  Variables at this level may 

be ranked, with the differences between data values having a definite meaning and 
significance, but there is no meaning in phrases like “twice as big,” and there is no 
meaningful zero.  So, as with shoe size, temperatures in Fahrenheit and Celsius are 
examples of this level.  0  F has absolutely nothing special about it, and 0  C is special 
only because it’s the freezing point of water.  Now, with temperature measured on the 
Kelvin scale, where 0 means no thermal activity whatsoever, you would be able to talk 
about “twice as hot,” because that would mean twice as much thermal activity, and, of 
course, there is a meaningful zero.  But I don’t see us using that scale in ordinary life any 
time soon ( 0  K is 67.459− F and 15.273− C). 

 
The highest level, the ratio level, is achieved by variables like age, height and 

number of pets from last class, the Kelvin scale, income, weight, speed, and many, many 
more. 

 
When variables are at the interval or the ratio level of measurement, they can be 

divided into two kinds, those that are counted, and those that are measured.  The 
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counted ones are called discrete, because they have gaps between them, since they are 
whole numbers.  The ones that are measured are called continuous, which means that 
they can be given to any degree of accuracy, depending on the measuring device and on 
how you decide to round the numbers.  This leads to the concept of boundaries, which 
we’ll talk about now and then hardly ever again. 
 
Boundaries 

What’s the difference between saying that something is 28.5 cm long and that it’s 
28.50 cm or 28.500 cm, for instance?  This is the subject of boundaries.  Let’s say that I 
weigh something on a scale that measures whole grams, and that it comes out to be 27 g. 

 
  (I know that grams aren’t a measure of weight, really, but rather of mass.  In 

other words, something that has a mass of 27 g has that mass no matter where you weigh 
it – on earth at sea level, on earth on a high mountain, on the moon, on Jupiter, wherever.  
But its weight varies depending on the gravitational force acting upon the mass.  The 
metric unit of weight is actually called the newton, and it’s the force required to cause 
one kilogram to accelerate one meter per second every second.  A kilogram at the earth's 
surface has a weight of about 9.80 newtons.  The unit of weight in our system (the U.S. or 
imperial system) is the pound, and the unit of mass has the funny name of “slug.”  
Nevertheless, I’ll continue to talk about the weight of 27 grams, even though it’s not 
correct.) 

 
Anyway, nothing really weighs exactly 27 g.  It’s a little more or a little less.  So 

when you’ve weighed something to the nearest gram and you get 27 g, that actually 
means that the object weighed between 26.5 g and 27.5 g.  These numbers are called its 
boundaries, and the difference between them (1 g) shows the accuracy to which you’re 
weighing the object. 

 
Now suppose you get a more accurate scale, one that weighs to the nearest tenth 

of a gram, and you weigh the object on it, and it reads 27.3 g.  (So it would have read 27 
g on the first scale.)  Again, nothing weighs exactly 27.3 g.  An object which registers 
that weight actually weighs between 27.25 g and 27.35 g – those are its boundaries, and 
they are 0.1 gram apart.  (Don’t worry about something weighing exactly 27.35 g, and 
wouldn’t it be rounded to 27.4 g, because nothing weighs exactly 27.35 g.) 

 
Here comes another scale, one that weighs to the nearest hundredth of a gram.  (A 

small paper clip weighs about a gram, so you can see how accurate this is getting!)  Now 
the object registers 27.32 g.  That checks with the previous measurements.  You know the 
drill:  its boundaries are 27.315 g to 27.325 g, a difference of 0.01 grams.  One further 
scale, this one weighing to the nearest thousandth of a gram, tells us the object weighs 
27.318 g.  Its boundaries are 27.3175 g to 27.3185 g, a difference of 0.001 g.   

 
These are boundaries.  They split the difference.  You can see how to form them.  

The upper one is easier:  just tack on a 5.  The lower one involves decreasing the last digit 
by 1 and then tacking on a 5.  This table summarizes what we just did: 
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Accuracy of 
Scale Weight Lower 

Boundary 
Upper 
Boundary 

Whole gram 27 26.5 27.5 

Tenth of a gram 27.3 27.25 27.35 
Hundredth of a 
gram 27.32 27.315 27.325 
Thousandth of a 
gram 27.318 27.3175 27.3185 

 
It’s a little harder when the weight ends in a 0.  Suppose you weigh a different 

object, and when it comes to the scale that weighs to the nearest tenth of a gram, it 
registers 27.0 g.  (This is a slightly lighter object.)  You form the boundaries the same 
way, but when you decrease the last digit by 1, you turn the 0 into 9, and then you have to 
borrow from the 7, giving a lower boundary of 26.95 g.  The upper is 27.05 g.  

  
If you then use a scale that weighs to the nearest hundredth of a gram, and it 

comes out 27.00 g, the boundaries are 26.995 g to 27.005 g.   
 
So the significance of those zeros at the end is to tell you how accurately the 

object was weighed.  An object described as weighing 27 g might be the same as one 
weighing 27.0 g, but you can’t tell for sure. 

 
These are boundaries.  They come into play only for continuous, measured 

variables.  If you say you have two pets, you are most definitely not saying you have 
between 1.5 and 2.5 pets.  Well, you are, but it’s kind of silly. 

 
Sampling 

This is a course in statistics, not research methods, also a very interesting field of 
study, so for the most part we just say we have a data set from a sample to analyze, and 
we don’t go into how we chose the sample, but just for today we’re going to talk about 
methods of collecting data, often referred to as sampling techniques. 

 
First, there is the random sample, in which every member of a population has an 

equal chance of being selected for the sample.  We’d like all samples to be random, but 
how do you actually accomplish that?  Say you’re doing a poll.  You assign a random 
number to each registered voter, select a certain number of these numbers, and phone 
those voters.  Oops.  Some of them aren’t home, some have had their phones 
disconnected, some won’t talk to you, and sometimes the phone is answered by a three-
year-old. 

 
You could try a systematic sample.  You pick every tenth number in the phone 

book, for instance.  (Let’s ignore the problem of cell phones.)  Even if every person 
answered the phone and your question, you wouldn’t have a truly random sample, 
because people with the same name would have their chances of being selected greatly 
decreased, because of not being ten or more apart in the phone book.  Still, it’s less work 
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than generating and assigning random numbers, and not at all a bad way to get close to a 
random sample. 

 
What you’d like to avoid is a convenience sample.  You’re doing product 

research on paper towels in a mall, and you flag down shoppers and ask them if they’d 
mind answering a few questions about paper towels.  Who’s going to say yes?  People 
with time on their hands, not dragging little children or having any number of other 
impediments.  ESPN scrolls:  “Should the manager remove the pitcher after this inning?  
To vote, log on to www.espn.com, etc., etc.”  Who is going to do that?  People who care 
one way or the other.  We won’t know which group, the yes’s or the no’s, will respond 
more, but we know it’s not in any way a random response.  Of course, it’s not a matter of 
life and death anyway.  The advice columnist asks, “Parents, if you had it to do over 
again, would you have children?”  You get the idea. 

 
Here are two kinds of sampling techniques, each a valid approach, which sound a 

bit alike but aren’t.  Try to distinguish between them.   
 
First, there’s stratified sampling.  Think of strata, or layers, of rock.  Say you 

want to know how many units students are taking, but you want to be sure that you get a 
fairly equal number of men and women in your sample.  So instead of getting a random 
sample from the whole group, first split the groups into the two sexes and then get a 
random sample from each group.   

 
Then there’s cluster sampling.  This is actually how unemployment figures are 

estimated, and it’s often used in evaluating medical techniques.  You select at random a 
bunch of neighborhoods, or hospitals, and then you get the information about every 
person or procedure in the selected parts.  It’s just the reverse of stratifying, where you 
split first and then randomly select; here you randomly select the groups and then try to 
do a census of the groups chosen. 

 
The mention of a census brings up a final point.  Sometimes you don’t want a 

sample – you want information about the entire population.  That’s what a census is, and 
of course it appears in the U.S. Constitution as something we do as a nation every ten 
years.  Of course the problem with a census is not being able to track down every last 
person, no matter how much effort is made.  Recently there has been a movement to 
apply concepts of statistics to the census results, making estimates of how many people 
have been overlooked, and what their characteristics are, which is rather a controversial 
approach, because some politicians would rather just overlook the missed people, and 
some wouldn’t. 

 
Several years ago it occurred to me to wonder why the word “census” was so 

similar to the word “censor,” since it seemed that their meanings had nothing in common.  
But it turns out that in ancient Rome the government official responsible for counting 
everything was also in charge of deciding which writings and performances were not 
suitable for public consumption.  Hence the census official, or censor, became a censor in 
our sense of the word. 
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Observational and Experimental Studies 
Here’s another topic best left to a course in research methods but which we’ll 

touch on today.  There are two ways to get data – to notice it and to make it happen.   
 
If we just notice it, or observe it, we’re doing an observational study.  We call it 

this even if we are asking someone a question or measuring them or having them fill out 
a survey.  The point is, we’re not altering the information, just collecting it. 

 
But sometimes you want to manipulate things a little to see what effects are 

produced.  When you do that, you’re conducting an experimental study, and there are all 
sorts of terminology and protocols and ethics associated with doing so.  Let’s use as an 
example trials of a new drug meant to reduce blood pressure.  The drug (and the dosage 
at which it is given) is the independent, or explanatory variable – you want to see if it 
explains differences in blood pressure – and the blood pressure readings are the 
dependent, or outcome variable. 

 
But of course you don’t just give the drug to all patients with high blood pressure 

and then proclaim that your drug works when average blood pressure drops, because of 
course there might be other reasons for the drop.  So you give some patients the drug, and 
they make up the treatment group, and you withhold the drug from others, and they 
comprise the control group.  And, since people’s blood pressure might well drop just 
because they believe that the new medicine will be effective, or just because they believe 
that someone is taking their problem seriously, you don’t just ignore the control group.  
You give them a fake pill, a placebo (Latin for “I will please”) and make sure that the 
patients have no idea which group they’re in and which pill they’re taking.  And when 
they have their blood pressure checked, you have it done by people who are similarly 
ignorant; otherwise they might inadvertently affect the reading.  An experiment done this 
way is called double blind.  You look for a difference in the average blood pressure of 
the treatment group compared to the control group after the drug has been taken for a 
suitable length of time, and if the difference is big enough (and we spend a lot of time in 
this course talking about how to find out if it is big enough), you declare that your drug 
works. 

 
Even with all of these precautions, it might turn out that your drug “worked,” not 

because of the specially-developed chemical you put it in, but because of some 
supposedly unimportant substance you used to fill up space in the pill.  This might be 
discovered some time later when the drug stops working because you started using some 
other filler.  When something else beside the independent variable is responsible for a 
difference in the dependent variable between the control group and the treatment group, 
we call that something else a confounding variable, because it confounds, or confuses, 
the analysis of the effect. 
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Worksheet #1: Boundaries 
 
Find the lower and upper boundaries for these measurements: 
 

1) 32.7 cm 

 
2) 104 mm 

 
3) 28.1 g 

 
 

4) 43.82 kg 
 
 

5) 3.90 in. 
 
 

6) 54 sec 
 
 

7) 88.89 yds 
 
 

8) 1.075 L 
 
 

9) 654.0 oz 
 
 

10)  4.674 lbs 
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Worksheet #2 -- Math for Stat  
 

1) Round to the nearest hundredth: 45−47.523
2.945

 
 
 

2) Round to the nearest tenth:  18.904+29.842
2

 
 
 

3) Round to the nearest thousandth:  14×68.663+49×61.896
14+49

 
 
 

4) Round to the nearest thousandth:  √8.3 
 
 
 

5) What is 17% of 6576, to the nearest whole? 
 
 
 

6) What is 65% of 833, to the nearest tenth? 
 
 
 

7) What percent of 1800 is 978, to the nearest hundredth of a percent? 
 
 
 

8) Simplify:  75 − 1.5(3.4) 
 
 
 

9) List all whole numbers between 7.56 and 10.05. 
 
 

10) Find �4
9
�
9
 and write is as a decimal to the nearest ten-thousandth. 

 
 

11) If 𝑦𝑦 = 3.428𝑥𝑥 − 21.831, find the value of y to the nearest tenth when 𝑥𝑥 = 14. 
 
 

12) If 𝑥𝑥 = −2.97, find 2x  to the nearest thousandth. 
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Lecture #3:  Making Data Sets into Tables and Graphs 
 

Looking at something like the Class Data Base can be a little overwhelming.  It 
contains so much information, so much raw (unsorted) data.  I’ve helped a little by 
putting all the males first and then all the females, both because this gives us two smaller 
sub-groups to look at and also because later in the course we might want to compare the 
statistics for males and females.   

 
But you’d be hard put to summarize any aspect of the class using this sheet alone.  

So today we’ll consider ways you can organize the data sets into tables and graphs to help 
see their essential natures.  And to do this you have to consider whether the variable is 
qualitative or quantitative, and, if quantitative, what level of measurement it possesses, 
and if it’s discrete or continuous, because this determines the kinds of tables and graphs 
you can use. 
 
Frequency Distribution Tables 
 

First of all, let’s do tables.  Say, for instance, that you wanted to make sense of the 
men’s ZIP code data.  ZIP code is a quantitative variable at the nominal level of 
measurement, almost like a categorical variable, in that there’s no real order to the ZIP 
codes.  So we make what’s called a categorical frequency distribution table (easier 
than it sounds).  We start reading down the list of ZIP codes, and every time we find a 
new ZIP code we write it down and place a tally mark next to it.  When we run across it 
again, we just make another tally mark.  Tally marks are a handy way of keeping track, 
because after four vertical lines we cross them diagonally for the fifth line, like a little 
bundle, and then when we’re done we can just count by fives and add on any extras.  
Other cultures use other systems to make the bundles.  Speakers of Mandarin do it like 
this: 

                     
The completed pattern is the character “jen,” and it means straight, or upright.   
 

After you’ve tallied all the men’s ZIP codes, count the tally marks and write that 
number in a new column.  These numbers have a special name that we’ll be using all 
semester.  They’re called frequencies, and that just means how many there are in a 
category, or class.  The symbol for frequency is f.  When we add up all the frequencies, 
which we symbolize by writing ∑ f , where ∑ is the capital Greek ‘S,’ (pronounced 
“sigma”) and obviously stands for sum, we get the size of the sample which we are 
tabulating.  We call this sample size n, and we will all semester.  Make sure you use a 
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lower-case n for the sample size; we need the upper-case for something else.  So here’s 
an equation: ∑= fn .  You’re learning the notation of descriptive statistics! 

 
Finally, maybe you’re interested not so much in how many men have, say, ZIP 

code 95490, but in what fraction of the group does.  We call this fraction the relative 

frequency, and it has the formula 
n
f .  We can give it as a fraction (not so helpful) or a 

decimal or a percent, and if it’s one of the last two, we might have to round, so we 
specify how that should be done.  Let’s give it as a percent to the nearest whole percent. 

 
Here’s how the finished product looks: 

 
Class Tally 

Frequency (f) Relative Frequency (
n
f ) 

95490 1111 5 17% 

95482 1111 1111 1111 
11 

17 59% 

95470 111 3 10% 

95453 1 1 
 

3% 

95451 11 2 7% 

95481 1 1 3% 

  ∑= fn =29 ∑ n
f = 99% 

    

    
    
    

 
The percents don’t always add up to 100, as you can see, what with rounding up and 
down.  As long the sum is close to 100, you probably haven’t made a mistake. 
 

So much for quantitative data at the nominal level of measurement, and 
categorical data.  What about a variable at the interval or ratio level?  (We’ll skip the 
ordinal in this discussion, but you might want to think about it.)   

 
Let’s look at the women’s ages, as an example.  Instead of just listing them as 

they come, we want to look at them in order, since the order of the numbers means 
something.  Furthermore, we don’t want to look at each age separately.  That would be 
too many separate numbers.  What we want to do is group the ages into a small enough 
number of groups that we can see any patterns that exist.  So what we’re going to make is 
a grouped frequency distribution table. 
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But how do we group them?  What we do is pick two numbers, one called the 

lower limit of the first class, and one called the class width, such that if we all use these 
numbers, and use them correctly, we’ll get identical tables.   

 
The lower limit of the first class is the smallest number we’re going to tally.  It 

must of course be either the age of the youngest person or an even younger age.  The 
class width is a little more complicated.  It is how many separate ages are in each class.  
It is also the difference between the lower limit of successive classes (or for that matter of 
the upper limit of successive classes).   

 
Let’s use 15 as the lower limit of the first class and 5 as the class width.  This 

gives us class limits of 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 
60-64, and…oh, we’re done now, because nobody older than 64 was in the group.   

 
We’re going to tally the ages just as we did the ZIP codes, but first we need to 

address a concept that’s important when the variable we’re looking at is continuous:  
What if we were rounding to something finer than whole years?  What if a person were 
19 and 4 months, or something like that?  We don’t really want gaps between our classes.  
So what we do is create something called class boundaries, as distinct from class limits, 
which split the difference between the upper limit of one class and the lower limit of the 
next higher class.  So the boundary between the first two classes is 19.5, halfway from 19 
to 20, and it is both the upper class boundary of the first class and the lower class 
boundary of the second class.  (This should remind you of the concept of boundaries as 
covered in the last lecture.)  We continue in this pattern creating class boundaries, and we 
follow the pattern for the lower class boundary of the first class and the upper class 
boundary of the last class, even though there is no splitting the difference going on.  In 
this way the classes butt right up against each other, which will be useful later in the 
course.   

 
This time, let’s write the relative frequencies as decimals to the nearest hundredth.  

Here’s the table: 
 

Class Limits Class 
Boundaries 

Tally Frequency (f) 
Relative Frequency (

n
f

) 

15-19 
 

14.5-19.5 1111  1111  1111   
1111 

19 0.40 

20-24 19.5-24.5 1111  1111  1 11 0.23 

25-29 24.5-29.5 1111    5 0.11 

30-34 29.5-34.5 11 2 0.04 

35-39 34.5-39.5 1111 4 0.09 

40-44 39.5-44.5 1 1 0.02 
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45-49 44.5-49.5 11 2 0.04 

50-54 49.5-54.5 11 2 0.04 

55-59 54.5-59.5  0 0.00 

60-64 59.5-64.5 1 1 0.02 

 
   ∑= fn =47 ∑ =








n
f 0.99 

 
The thing about both of these tables is that they show the nature of the data sets so 

clearly.  ZIP code 95482 is by far the most frequent ZIP code for the men.  Women are 
most likely to be between 15 and 19 years old. 

  
 

Graphs 
 
 So now we’ll make pictures, or graphs, of these tables, as another way of 
comprehending the patterns.  Again, there will be distinctions among the ways of doing 
so depending upon the nature of the data set being portrayed. 
 
 In dealing with categorical data or quantitative data at the nominal level of 
measurement, a very good picture is called a Pareto chart (named after Vilfredo Pareto, 
1848-1923, who was known for much more important achievements in the field of 
economics).  His idea was to make a bar graph, with the bars usually not touching, 
arranged from the class of the largest frequency to that of the smallest.  The bars could be 
horizontal or vertical.  I’ve seen it most often used in the newspaper, when readers are 
asked, say, to name the most important problem facing their community, and a 
categorical frequency distribution is made to determine the length of the bars.  Usually 
relative frequencies are used, but in this example of a Pareto chart of men’s ZIP codes, 
I’ll stick with plain old frequencies.   
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Do you see how powerful this image is?  It’s obvious which the most common ZIP code 
is, from its position on the far left and by the length of its bar.  When ZIP codes are tied 
in frequency, they can go in any order.   
 
 Another graphical technique to use with qualitative variables and quantitative 
variables at the nominal level of measurement, and one you’re surely acquainted with, is 
the pie chart, much beloved of comic-strip writers and advertisers.  What you do is slice 
up a “pie” so that the size of its pieces indicates the size of the frequencies of the different 
categories.  And it happens that the size of the piece is determined by what’s called the 
central angle, which is the angle made by the two edges of the slice assuming you’ve 
started from the exact center of the pie: 
 

 
 
We measure angles in degrees, and there are 360 of them around the center of the pie.  
(That’s because you make four right, or 90 , angles if you cut the pie into four equal 
pieces): 

 
So we have to determine how many degrees to make the central angle for the slice 

representing each class, and for that we use the formula 360⋅
n
f , which splits up the 

central angles precisely proportionately to the frequency of the classes. 
 
 The angle for the 95482 slice would be 17

29
∙ 360° ≈ 211°; for 95490, 5

29
∙ 360° ≈

62°; for 95470, 3
29
∙ 360° ≈ 37°; for 95451, 2

29
∙ 360° ≈ 25°; and for 95453 and 95481,  

1
29
∙ 360° ≈ 12°.  These angles total 359°, very close to 360°.   

 
If you’re not sure how to use a protractor, consult a website like this one: 

http://www.mathsisfun.com/geometry/protractor-using.html.  Then start cutting your pie. 
You can start with any ZIP code you want. Make a first cut, and then use that to make a 
second cut that makes the slice have the central angle of that ZIP code.  Use that second 
cut as the basis of the central angle of another ZIP code, and so on.  The final piece won’t 
have to be measured; it will be what’s left from the one before it and the first slice.  Don’t 
forget to label each slice with its ZIP code, or the graph will be meaningless.  If a piece is 
too small to label, do what maps do with states like Rhode Island:  write the name outside 
the circle with a line to the appropriate slice.  Here is the pie chart: 
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Histograms 
 
 Neither the Pareto chart nor the pie chart is suitable for variables at the interval 
and ratio levels of measurement, because you can’t go putting them in any order in the 
chart.  The best way to convey them graphically is called a histogram.  It’s a bar graph in 
which the bars touch, and so we use the class boundaries when we mark off the scale on 
the horizontal axis.  As with the Pareto chart, the vertical axis shows the frequencies.  Be 
sure the frequency scale goes high enough to accommodate the class with the greatest 
frequency but not too much higher, so that you don’t have a lot of wasted space. 
 

Here’s the histogram for the women’s ages: 
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Once you’ve decided where to place the 14.5 and the 19.5 on the age axis, all other 
numbers have their places determined, because you’re saying that the distance between 
those two positions represents five years.  So you can’t just put the other boundaries any 
old place.  Also, this decision means that the distance from the corner to the 14.5 can’t 
really be 14.5 years, so you interrupt the axis and put the two diagonal hash marks to 
indicate this disruption of the scale.  Lightning bolts are also used for this.   
 
Representations of Bivariate Data 
 
 Sometimes we want to look at two variables at once, and for these situations we 
use the word bivariate, meaning two variables.  Say we’re studying the connection 
between people’s ages and the number of pets they have.  To do this visually, we make a 
scatter plot, which I’m sure you’ve done before.  Each point in the scatter plot gives us 
two pieces of data about a single member of the sample, one datum for each variable.  
We have to specify which variable is represented by the horizontal position of the dot and 
which by the vertical.  The horizontal variable is of course the x-variable, and it’s 
sometimes called the independent variable (like the terminology we used in describing 
experimental studies) and the vertical variable, the y-variable, is also called the 
dependent variable, though in the case of scatter plots we are not trying to imply by this 
terminology that the one causes the other. 
 
 You have to make two scales, one for each variable, and to use diagonal hash 
marks or lightning bolts as breaks if appropriate.  One problem is what to do if two 
people have the same values for both variables.  You can indicate this simply by making 
another point close to the first, and so on if there are more than two, or you can count up 
how many identical ones there are altogether and put the figure in parentheses next to a 
single dot in the correct position, like this: 
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Activity #3:  Making a grouped frequency distribution table 
 
Construct a grouped frequency distribution table for the heights of the men in the Class 
Data Base, using 60 as the lower limit of the first class and 3 inches as the class width.  
Have columns for the Class Limits, the Class Boundaries, the Tally, the Frequency, and 
the Relative Frequency to the nearest hundredth. 
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Worksheet #3: Categorical Frequency Distributions and Graphs  
 
Here’s a list of the favorite colors of a group of Statistics students: 
 
 
Red   Blue   Red   Blue 
Red   Green   Green   Blue 
Blue   Purple   Blue   Orange 
Blue   Teal   Blue   Green 
Teal   Blue   Purple   Blue 
Green   Red   Blue   Black 
Green   Red   Yellow   Green 
Green   Red   Red   Green 
Red   Green   Purple 
 
 

1) Make a categorical frequency distribution table for this data set.  Include classes, tallies, 
frequency, and relative frequency to the nearest hundredth. 
 
 

2) Make a Pareto chart of the data set. 

                                      
                                      
                                      
                                      
                                      
                                      
                                      
                                      
                                      
                                      
                                      
                                      
                                      
                                      
                                      

 
 

3) Make a pie chart of the data set.    
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Worksheet #4: Grouped Frequency Distribution Tables and Graphs  
 

Here is a set of ages of a group of Statistics students:                                                               
 
22 31 17 19 21 
21 20 18 18 22 
32 20 19 22 17 
19 20 19 18 17 
21 18 23 19 18 
18 18 19 19 22 
33 19 18 18  
25 19 18 18  
 
 

1) Make a grouped frequency distribution for this data set.  Use 16 as the lower limit of the 
first class and 3 as the class width.  Include class limits, class boundaries, tallies, 
frequencies and relative frequencies to the nearest whole percent. 

 
 
 
 

2) Make a histogram for this data set. 
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Lecture #4:  Measures of Central Tendency 

 
When you look at a data set, there are three different facts about it that you want 

to know.  First, what is its most typical member?  This is called a measure of central 
tendency, and there are several different kinds.  This lecture is about these measures.  
Then there’s the question of how spread out or varied the members are.  These are called 
measures of variation, and they are the topic of the next lecture.  Finally, what positions 
do the various members of the data set have relative to the most typical member?  These 
are called measures of position and will be covered in the lecture after the one about 
measures of variation.   

 
The kind of measure of central tendency which is appropriate for a certain data set 

depends on whether the variable is qualitative or quantitative, and, if it’s quantitative, 
what level of measurement the data set has.  If a data set is at the nominal level, the only 
fitting measure is the mode, which is the most common value the variable takes on.  
When I was a child I thought that the word mode meant ice cream, because people would 
talk about pie à la mode, which was pie with ice cream on top, but actually the phrase 
refers to the popular or stylish way of having pie, so mode means popular.   

 
So in the categorical frequency distribution of men’s ZIP codes in the last lecture, 

the mode was 95482, which was given by 17 of the men in the group.  In the grouped 
frequency distribution of women’s ages, the mode was the age class 15-19, which had a 
frequency of 19.  This class is also called the modal class, because it is the class with the 
largest frequency in the distribution.  (If two classes are tied for the highest frequency, 
the distribution has two modes and is called bimodal.) 

 
With a quantitative variable at the nominal level of measurement, the mode is as 

far as you can go in measures of central tendency.  But at higher levels, other measures of 
central tendency can be named.  For instance, at the ordinal, interval, and ratio levels, you 
can talk about the median.  This is the value of the variable that has half the data set less 
than or equal to it and half the data set greater than or equal to it.  It divides the data set 
into two parts of equal frequency.   

 
Let’s use the first five men’s ages as an example.  We’ll call the age variable x.  

Here’s a table with these numbers: 
x 

27 
36 
18 
20 
17 

 
A table like this contains raw data, which means it hasn’t been sorted in any way.  To 
determine the median, we sort the data, either ascending, from lowest to highest, or 



26 

descending, from highest to lowest.  When we do this, we’re creating what’s called an 
array, which is a data set sorted according to order.  Let’s do ascending: 

x 
17 
18 
20 
27 
36 

 
Now we can see that the third of these numbers, 20, is the middle one, and so it’s the 
median of this very small data set.  If the sample size is n, then if n is an odd number the 
median occupies the 

2
1+n  position, in this case 3

2
15
=

+ , or the 3rd position. 

 
 I know what you’re thinking:  what if n is an even number, so the position 
formula doesn’t yield a whole number?  Let’s try putting in the sixth age, 27, in the list, 
and then arranging the new set in ascending order: 

x 
17 
18 
20 
27 
27 
36 

Now there is no exact middle number.  The middle two numbers are in the 
2
n  position 

(3rd in this case, n being 6) and the 1
2
+

n  position (4th in this case).  So here we define the 

median as being the number halfway between these two values, in other words 20+27
2

=
23.5.  This median has half the data set less than it and half greater than it.  So you can 
see that the median doesn’t have to be a member of the data set. If the two middle 
numbers are not the same, it will be their average. 
 
 Different symbols are used for the median.  The calculator calls it “med,” which 
we will too. 
 
 Back to modes for a minute.  The first didn’t have a mode.  The mode of the 
second set is 27.  Data sets can have no mode, one mode, two modes, etc.  Modes are 
very flexible that way, unlike other measures of central tendency.  A data set has one and 
only one median.   
 
 The most commonly used measure of central tendency, and the one you’ve 
always heard called the average, is what we call in statistics the mean.  It is appropriate 
to use when the variable is at the interval or ratio level of measurement.  You know how 
it works:  you add up all the numbers and then divide by the number of numbers.  But 
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now we have some fancy notation for it.  Using our first data set, we add up the values of 
x: 

x 
27 
36 
18 
20 
17 

118 
 
Using our sigma notation, we say that ∑𝑥𝑥 = 118, and since we use n for the sample size, 
dividing by it gives us ∑𝑥𝑥

𝑛𝑛
= 118

5
= 23.6.  So the mean of our sample is 23.6, and we have 

a symbol for the sample mean which we’ll be using throughout the course:  x , 

pronounced “x bar.”  To summarize, the formula goes 
n

x
x ∑= . 

 
 When x  isn’t a whole number, like our example, the convention for rounding it is 
to go one place beyond the data.  Since the ages were whole numbers, that means that if 
the mean hadn’t terminated by the tenths place, we would round it to that place. 
 
 The thing about the mean is that it’s the number that, if all data values were equal 
to it, the sum of the values, the ∑ x , would be the same as it actually is.  Say you go 
bowling, and you bowl a 121, a 140, and a 168.  Your total for the three games is 429, 
and your average score is 143

3
429

= .  If you’d scored 143 on each of the three games, 

your total would still be 429.   
 
 Likewise, if every age in the data set were 23.6 years, the total would still have 
been 118.   
 

So the mean is a kind of balancing point.  If you take each member of the data set 
and subtract the mean from it and then add up the differences, called deviations from the 
mean, you always get 0.  Take the bowling example:  22143121 −=− , 3143140 −=− , 
and 25143168 =− .  Notice that ( ) 025322 =+−+− .  This always works.   

 
The final measure of central tendency, appropriate when the variable is at the 

interval or ratio level of measurement, is the midrange.  It’s the number halfway between 
the smallest and the largest value of the variable, hence the name:  it’s the middle of the 
range of values.  We have names and notations for these concepts.  The smallest value is 
called the minimum (min) and the largest the maximum (max) so the midrange can be 
found by this formula: 

2
maxmin+  
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In other words, the midrange is the mean of the min and the max.  Lots of m’s here.  For 
our original data set, min = 17 and max = 36, so the midrange is 17+36

2
= 53

2
= 26.5.  Like 

the median, the midrange can be a member of the data set, but it doesn’t have to be.  It 
might not even be a whole number.   
 
 (Here we must make a little detour for an annoying little topic that becomes 
important later in the course, when we get to inferential statistics.  The measures we’ve 
talked about so far are statistics, numbers which describe a sample, if in fact our little 
data set is a sample.  Is it?  It is if we say it is.  So the mean x  is actually the sample 
mean.  But what if our data set is actually a population?  How could it be?  Well, it can 
be if we say it is.  And if it is, the 23.6 that we found has a different symbol and a slightly 
different formula, even though the result is the same.  This parameter, the population 
mean, is given the symbol µ , spelled “mu” in English.  It’s the Greek “m,” and a very 
lovely one it is!  Often parameters are symbolized by Greek letters while statistics have 

English ones.  Anyway, the formula for µ , instead of being 
n

x∑ , is actually 
N

x∑ , 

because the symbol for the population size is N, as opposed to the sample size, n.  N is a 
parameter, and n is a statistic.  You probably think I’ve gone completely mad, but this is 
how it’s done, and just wait till the next lecture where we encounter a number which is 
actually a different number depending on whether it’s a statistic or a parameter!  At least 
x  and µ  were both equal to 23.6.) 
 
 So we have found four measures of central tendency for our data set, and there are 
four different results: 

Mode None 
Median 20 
Mean 23.6 
Midrange 26.5 

 
Is this a problem?  Not really, but you might be asking how you’d know which measure 
would be the best to use in a certain situation. 
 
 There’s no one simple answer, but there are guidelines.  They have to do with the 
concept of resistant statistics.  A resistant statistic is one that is not affected very much 
by small changes in the data set, particularly adding some very high or very low values. 
 
 Let’s begin with an example.  You’re applying for a job at a small company.  The 
boss makes $120K per year, and each of the four employees (one of whom is leaving the 
firm) makes $20K.  The total payroll is $200K, and when the boss tells you that the 
average (mean, in this case) pay is $40K, you’re pretty happy about it.  But then you get 
the job and find you’re making only half that much.  Wouldn’t it have been more 
informative to be told the median salary, which is $20K, rather than the mean, which is 
inflated by having that comparatively huge salary thrown in? 
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 So the median is a much more resistant statistic than the mean and should be used 
whenever there are a few very large or unusually small values of the variable in the data 
set.  That’s why you see data on median, not mean, home prices, because a few mansions 
make the mean frighteningly large.  And the mean in this case would not be as 
informative as the median, because you’re probably not looking to buy a mansion 
anyway.  The median is a much better indicator of what’s out there. 
 
 The midrange suffers even more than the mean from the defect of not being 
resistant, of being unduly affected by a high or low value.  In its case altering a single 
datum, if it were the min or the max, would greatly alter the midrange.  And the mode – 
well, nobody wants to use it unless they have to, as in the case of the nominal level of 
measurement.   It just doesn’t do much for us mathematically. 
 
 The mean is definitely the most useful for us mathematically, as you’ll see, so 
even when it isn’t the most appropriate measure of central tendency to use, people tend to 
use it.  This happens even in situations where it’s not only inappropriate – it’s downright 
unethical.  Take GPA, or grade-point average.  An A is 4, a B is 3, etc.  You multiply the 
number of units the course was by the number of the grade you got, add these products 
up, and divide by the total number of units, rounding to the nearest thousandth.  Sounds 
kosher, but it assumes that there’s some meaning to the differences between grades, 
whereas grades are actually at the ordinal level of measurement, no matter what anybody 
tries to maintain to the contrary.  A’s are better than B’s, B’s than C’s, but are they the 
same better?  I just don’t think you can say that.  Finding a GPA (or an average rating 
when students rate professors on a scale of 1 to 5) to the nearest thousandth makes it 
seem that the grading process is a lot more precise than it really is.  At most you could 
give the median grade – the number that half the grades are at or above, and half at or 
below.  But you can see the problem with this:  it would be impossible to rank students 
except in very large groups, because the medians would either end at the decimal point or 
at .5.  (I don’t expect anybody to wage a campaign to stop the unethical use of the mean, 
though.  People will continue to employ it because it gives the illusion of precision.) 
 
Shapes of Distributions 
 
 Sometimes it doesn’t matter which measure of central tendency you use, because 
they’re all the same.  This leads to the idea of the shape of a distribution.  We’re thinking 
here of the histogram made by a data set of a variable at the interval or ratio level.  
  
 Maybe it’s symmetrical – you could fold it along a vertical line and the two sides 
would match: 

 
In this case the four measures of central tendency are the same, right in the middle. 
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 But what if this isn’t the case?  A distribution could be what we call skewed: 
This one is skewed to the left (we give the direction of skewing as where the tail goes): 
 

 
 
The low values of this distribution pull the mean and the midrange to the left of the 
median and mode. 
 
 Here’s a distribution that is skewed to the right: 
 

 
 

This is what the home prices would look like.  The high-priced houses have pulled the 
mean and the midrange to the right of the median and the mode. 
 
Weighted Means 
 
 Here’s a final concept for this lecture, and it’s one which is very useful in various 
parts of real life.  You already have a feel for it, I’m sure.  Say you’re taking a course, 
and you’re just about to have the final, which is worth 20% of the grade.  So far you’ve 
got an A, but you have a terrible feeling about the final.  Well, not to worry!  Even in the 
unlikely event you get a 0 on the final, you couldn’t possibly get below a C in the course 
(not what you want, but still, you passed, and it’s a respectable grade).  And you’re not 
going to get a 0.  How about a 50?  Well, in that case, you’d get a B, not so bad.  The 
thing is that the majority of the grade has already been determined; the instructor isn’t 
going to average your A and whatever you get on the final, because they don’t have equal 
weight. 
 
 A baseball example:  At the beginning of the season, every at-bat affects your 
batting average tremendously.  But as time goes on, it will take a big slump or a long hot 
spell to have much of an effect on your average.  Your average is based on an 
increasingly large share of the season. 
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 Let’s do this problem:  The mean height of the men in the Class Data Base (call it 
Mx ) happens to be 69.897 inches to the nearest thousandth (I know we’re supposed to 

round to the tenths, but I’m using more places to show the precision of our method).  The 
women’s is �̅�𝑥𝐹𝐹 = 63.957 inches.  Is it possible to determine from the figures the mean of 
the entire sample?  Yes, but first here’s how not to do it:    
 
 �̅�𝑥𝑀𝑀+�̅�𝑥𝐹𝐹

2
=  69.897+63.957

2
≈ 66.927 inches to the nearest thousandth of an inch. 

The mean of the entire sample is actually 66.224 inches, so averaging the men’s and 
women’s means doesn’t work, and that’s because there are different numbers of men and 
women making up the separate means, and we have to weight them accordingly.   
 
 There are 29 men (𝑛𝑛𝑀𝑀 = 29) and 47 women (𝑛𝑛𝐹𝐹 = 47).  First of all, since there 
are more women, the sample mean will be closer to the women’s mean than the men’s, 
and you can see that it is, since 66.224 < 66.927, which was the half-way point. 
 
 Remember that the mean of a data set is the value of the variable that, if every 
member of the set were that value the sum of the values would be the same.  In other 
words, if the 29 men were each 69.897 inches tall, their total height would be the same as 
the actual total height of the men.  Imagine them all standing on top of each other’s heads 
in a tall column.  That total height would be MM xn ⋅ .  Likewise, the total height of the 
women is FF xn ⋅ .  Now, put the two columns on top of each other, and you have the 
total height of the sample:  FFMM xnxn ⋅+⋅ .  And the size of the sample?  It’s FM nn + .   
 
 Putting it all together, the mean of the whole sample (we call it the weighted 
mean because we calculated it from separate means, using their sample sizes, or weights), 
looks like this: 
 
 �̅�𝑥 = 𝑛𝑛𝑀𝑀∙�̅�𝑥𝑀𝑀+𝑛𝑛𝐹𝐹∙�̅�𝑥𝐹𝐹

𝑛𝑛𝑀𝑀+𝑛𝑛𝐹𝐹
= 29×69.897+47×63.957

29+47
≈ 66.224 

 
And that’s just what I know it is from using the Excel software on the Class Data Base, 
within a thousandth of an inch, which is certainly more than close enough.
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Worksheet #5: Measures of Central Tendency  
 
For each data set, find the mode, median, mean, and midrange.  Round to the nearest 
tenth, if necessary. 
 

1) This is a set of ages, given in years. 

23 
19 
57 
19 
21 
23 
55 

 
2) This is a set of numbers of pets. 

1 
12 
8 
4 
1 
0 
3 
7 

 
3) This is a set of heights, given in inches. 

70 
70 
75 
73 
76 
69 

 
4)  This is a set of shoe sizes. 

 
9 
10.5 
12 
8 
9.5 
11 
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Worksheet #6:  Weighted Means 
 

1) If 24 apples have an average weight of 31.75 grams, and 16 pears have an average 
weight of 34.03 grams, find the average weight for the whole group to the nearest 
hundredth. 

 
2) If 16 lizards have a mean length of 12.8 cm, and 21 newts have a mean length of 

15.0 cm, find the mean length of the whole group to the nearest tenth. 
 

3) If 𝑛𝑛1 = 84, �̅�𝑥1 = 123.329 sec, 𝑛𝑛2 = 71, and  �̅�𝑥2 = 97.804 sec, find the weighted 
mean time for groups 1 and 2 combined. 

 
4) If the average number of toothpicks used in building a model bridge is 178, where 

16 model bridges were built, and the average number of toothpicks used in 
building a model skyscraper is 423, where 22 model skyscrapers were built, find 
the average number of toothpicks used for the structures as a group, to the nearest 
whole. 

 
5) If 19 cats have a mean weight of 4.879 kg, and 37 dogs have a mean weight of 

8.372 kg, find the mean weight of the whole group to the nearest thousandth. 
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Lecture #5:  Measures of Variation 
 
Measures of variation are not as familiar as measures of central tendency.  We’re 

not looking for the most typical number here; we’re looking for a way to describe 
numerically how spread out the members of the data set are.   

 
Of course, if a variable is at the nominal level of measurement, we can’t talk 

about spread at all, so these variables have no measure of variation, but for the other three 
levels there’s the very simplest of the measures, the range, which is the spread itself, the 
difference of the highest and the lowest member of the set, the max minus the min.  
Here’s the data set we used in the last lecture:   

 
x 

27 
36 
18 
20 
17 

 
The largest age (the max) is 36, and the smallest (the min) is 17.  I know that in everyday 
speech you might say that the range is 17 to 36, but in statistics we use the word “range” 
to refer to the difference itself, 19 years.  We can say that the people whose ages are in 
this data set all have ages within 19 years of each other.  The formula for the range is 

minmax− .   
 
 Couldn’t be simpler, but the problem is that it’s not a resistant statistic as defined 
in the last lecture.  Add one really old person and the range is altered tremendously!  So 
as long as we’re dealing with a variable at the interval or ratio level and can calculate the 
mean of the data set, our measure of variation will be the standard deviation.  It’s called 
“standard” because it’s what people normally use to quantify (make a number to express) 
variation.  Everyone uses it when doing statistics; we’ll use it all semester, and pretty 
soon you’ll feel that you’ve always known about it.  But in the meantime it will probably 
seem very odd to you, if not downright bizarre, and you’ll want to know why it’s done 
the way it is.  Try not to ask.  Just accept that it is the standard deviation. 
 
Your calculator can supply you with the standard deviation of a data set with no problem, 
but we’re going to build up its definition and calculation in what is called the table 
method.  We’ve already started the table, which is the list of x values.  Then we must 
find the mean of the data set, which we did in the last lecture.  It’s 23.6.  We now make 
another column in the table, headed xx − .  We take each datum and subtract the mean 
from it:
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x xx −  
27 3.4 
36 12.4 
18 −5.6 
20 −3.6 
17 −6.6 

 
The xx − ’s are called deviations from the mean, because they express how far the 
datum is from the mean.  If the x is less than the mean, its deviation from the mean is 
negative, and if it’s greater than the mean, positive.  Notice that the xx − ’s add up to 0, 
which as mentioned in the last lecture is the way it should be.  Seeing that they do add to 
0 is a good check both on the correctness of x  and of the xx − ’s. 
 
 The next, and final, column of the table comes from taking the xx − ’s and 
squaring them.  In other words, the heading is ( )2xx − .  These are called squared 
deviations from the mean for obvious reasons.  Remember that squaring a number can 
never result in a negative, even if your calculator seems to be telling you so.  Multiplying 
two identical positive numbers (which is what squaring is) gives a positive product, and 
multiplying two identical negative numbers also gives a positive product, and 000 =⋅ .  
Here’s the table now: 

 

x 
xx −  ( )2xx −  

27 3.4 11.56 
36 12.4 153.76 
18 −5.6 31.36 
20 −3.6 12.96 
17 −6.6 43.56 

 
 And that’s the end of the table, which consists of the three columns.  Now we do 
various things with the third column, ( )2xx − .  First we add it up: 
 

∑(𝑥𝑥 − �̅�𝑥)2 = 253.2 
 
Then we divide this sum by one less than the sample size, 1−n .  Why 1−n ?  Well, it 
turns out that this number is a better fit for the population of which this data set is a 
sample.  (Try not to worry about this.)  We label this quotient 2s , and it’s called the 
sample variance: 
 

𝑠𝑠2 =
∑(𝑥𝑥 − �̅�𝑥)2

𝑛𝑛 − 1
=

253.2
4

= 63.3 
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So 63.3 is the sample variance.  Finally, to find the sample standard deviation, labelled 

s, because 2ss = , we take the square root of the sample variance: 
 

𝑠𝑠 = √63.3 ≈ 7.956, 
 
and we round this to the nearest tenth, following the same rule as for the sample mean.  
So 𝑠𝑠 ≈ 8.0. 
 
 To summarize, the formula for the sample standard deviation is 
 

( )
1

2

−

−
= ∑

n
xx

s  

 
and you should memorize it.  Actually you will have memorized it, or at least learned 
how to do it, by the time you’ve practiced a few times.  
 
 The final measure of variation concerns seeing how the sample standard deviation 
measures up against the sample mean.  Is the standard deviation large or small compared 
to the mean?  We find the ratio of the standard deviation to the mean, and this is called 
the coefficient of variation, or VARC : 
 

𝐶𝐶𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑠𝑠
�̅�𝑥

= 7.956
23.6

≈ 0.337. 
 
To the nearest whole percent, this is 34%.  Notice that I used more of s than just to the 
nearest tenth in doing the further calculation.  That’s because once you start rounding and 
use the rounded numbers to get other numbers you get further and further away from an 
accurate figure.   
 
 The sample variance, the sample standard deviation, and the sample coefficient of 
variation are all statistics, because they are numbers that describe a sample.  The 
corresponding parameters, describing a population, not only have different symbols but 
also a slightly different formula.  It is annoying but necessary to look at this. 
 
 You use the same table, except that the headings are now x, µ−x , and ( )2µ−x , 
because you’re talking about a population mean, µ , instead of a sample mean, x , 

though the numbers are the same.  Then you add up the ( )2µ−x ’s and get ( )∑ − 2µx  
which is also the same as when the data set was considered a sample.  Here is the change:  
instead of dividing by 1−n , one less than the sample size, you divide by N, the entire 
population size.  Try not to wonder why.  And this new number, the population 
variance, which is a parameter, is given the symbol 2σ , that funny letter being the 
lower-case Greek sigma, like our “s,” whose capital form, Σ , we’ve been using for quite 
some time now.  This gives us 
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𝜎𝜎2 = ∑(𝑥𝑥−𝜇𝜇)2

𝑁𝑁
= 253.2

5
= 50.64, 

 
and then  σ , the population standard deviation, also a parameter, is the square root of 

2σ : 
 

𝜎𝜎 = √50.64 ≈ 7.1. 
 
To summarize the formula for the population standard deviation, it’s 
 

( )
N

x∑ −
=

2µ
σ  

 
 As you can see, a data set considered as a sample has a larger standard deviation 
than when it’s considered as a population and we look at its population standard 
deviation:  in this case, 8.0 > 7.1.  This happens because the quotient in the sample 
variance has a denominator one smaller than the denominator in the population variance, 
and dividing by a smaller number gives a larger quotient. 
 
 In practice, a data set will not be looked at as both a sample and a population, and 
it usually will be seen as being a sample, but we have to introduce these distinctions.  
And now I can take another shot at explaining why we use 1−n  as the denominator in the 
sample variance.  If, as you do in inferential statistics, you’re using a sample to draw 
conclusions about the population it’s a part of, you’ll get a more accurate estimate of the 
population standard deviation by using the 1−n .  Using the entire sample size will cause 
you to underestimate the population standard deviation and hence the degree to which 
numbers in the population are spread out. 
 
 And one last thing to mention:  the standard deviation is the square root of the 
variance, and the variance is the square of the standard deviation.  It may seem 
redundant to have two such closely-related entities, but that’s how it is.  To find the 
standard deviation using the table method you have to find the variance first and then 
take its square root.  When your calculator works with a data set it just reports the 
standard deviation, and if you need to find the variance for any reason you have to square 
the standard deviation. 
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Activity #4 & 5:  Finding measures of central tendency and variation 

Using the first five women’s heights in the Class Data Base, find 

1. The mode        

2. The median        

3. The mean        

4. The midrange        

5. The range        

6. The sample variance (to the nearest tenth)    

7. The sample standard deviation (to the nearest tenth)   

8. The coefficient of variation (to the nearest whole percent)  

Use and include the table method for the sample variance and standard deviation
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Worksheet #7: Measures of Variation  
 
For each data set, find the range, variance, standard deviation, and coefficient of 
variation.  All these data sets are samples.  Round to the nearest tenth, if necessary, for 
the range, variance, and standard deviation, and to the nearest whole percent for the 
coefficient of variation. Show the table method, but also get the answers on your 
calculator using 1-Variable Stats. 
 

1) This is a set of ages, given in years. 

23 
19 
57 
19 
21 
23 
55 

 
2) This is a set of numbers of pets. 

1 
12 
8 
4 
1 
0 
3 
7 

 
3) This is a set of heights, given in inches. 

70 
70 
75 
73 
76 
69 

 
4)  This is a set of shoe sizes. 

 
9 
10.5 
12 
8 
9.5 
11 
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Lecture #6:  Measures of Position 
 
In addition to the measures of central tendency and variation which we’ve already 

discussed, there is a third kind:  measures of position.  They fall into two categories 
depending on whether the measure of central tendency being used is the median or the 
mean.   

 
Median, Quartiles, Deciles, and Percentiles 
 
 Imagine that you had a data set of 500 scores on a test, and that the smallest one 
was 51 and the largest was 95.  You could write the 500 scores in a line from smallest to 
largest.  Let’s say that the median of the scores was 82.  So half the scores would be 82 or 
below, and half would be 82 or above.   As you can see, there would be quite a few 
scores the same in order to get 500 numbers. 
 
 The line could be envisioned as looking something like this: 

 
 
There would be 250 numbers between the min (51) and the median (82), and another 250 
numbers between the median and the max (95). 
 
 Now look at the lower (left) half of the scores.  They would have a median of 
their own.  Let’s say it’s 71.  So half of this lower half would be between 51 and 71, and 
the same between 71 and 82.  Half of a half is a quarter, 125 scores in this case.  We have 
a name for this median of the lower half:  the first quartile, or 1Q .  It’s greater than or 
equal to one quarter of the scores: 

 
 
 We could do the same thing with the upper (right) half of the scores:  find its 
median.  Let’s say this is 88.  Three-quarters of the scores would be less than or equal to 
88 – the half from 51 to 82 and the quarter (half of a half) from 82 to 88.  So we call the 
score in this position the third quartile, or 3Q .  (Here I might add that another name for 
the median could be 2Q , because it’s greater than or equal to two-fourths of the scores.)  
Here’s what we have so far: 

 



41 

These five scores and their positions, min, 1Q , median, 3Q , and max, are called the five-
number summary of the data set.  They divide the set into four groups, or quarters, of 
equal size.   
 
 Can you tell by looking at them that the low scores are much more spread out than 
the upper ones?  It takes from 51 to 71, 20 points, to fit in the 125 lowest scores, but it 
takes only 11 ( 7182 − ) for the next 125, then 6, and then 7.  (Remember, I just made up 
all these numbers.) 
 
 In fact, half of all the scores (250 in this set) fall between 1Q  (71) and 3Q  (88).  
These scores are the middle half of the scores.  We have a special name for the range of 
this middle half of scores:  the interquartile range, symbolized IQR.  Its formula is 
 

13 QQIQR −=  
 
and in our example it is .177188 =−    The middle half of the scores are within 17 points 
of each other.  The interquartile range is a measure of variation:  how tightly packed the 
middle half of the scores are. 
 
 Let’s go on a bit with our example.  Let’s say that one-tenth, or 50, of the scores 
are between 51 and 60.  We would call 60 the first decile, or 1D , because it’s greater than 

or equal to one-tenth of the scores.  Can you see where 6D  would fall?  Between the 

median (which could be thought of as 5D ) and 3Q , because 
10
6  is between 

10
5  and 

4
3  

(think 75.06.05.0 << ).  Deciles aren’t used much, but the next “-ile” is. 
 
 And that’s percentiles, which you’ve no doubt heard of.  “Per cent” means “out 
of one hundred.”  Imagine the score which is greater than or equal to only one-hundredth 
of the scores.  It’s called the first percentile, or 1P .  So 101 PD = , 251 PQ = , med 50P= , 

753 PQ = , and so on.   
 
 Can you see where 35P  would fall?  Between 1Q  and the median.  Let’s say   

7935 =P .  And what about 80P ?  Between 3Q  and the max.   Let’s say 9180 =P .  I’ll put 
them on our line: 
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I hope it’s obvious to you that this is not an ordinary scale, where distances between 
numbers have meaning (from 79 to 82 is a longer stretch than between 71 and 79, for 
instance), but rather the visualization of 500 numbers written in order. 
 
 Here are some questions to see if you understand the concepts: 
 

1) How many scores are between 71 and 95?  (375, or ¾ of 500) 
 

2) How many scores are at least 79?  (325, which can be done two ways:  65% of 
500, or 500 minus 35% of 500) 
 

3) How many scores are between 82 and 91?  (150, or 30% of 500, 30% because 
80% − 50% = 30%) 
 

4) How many scores are between 79 and 91?  (225, or 45% of 500, 45% because 
80% − 35% = 45%) 

 
Outliers 
 

One difference between measures of position and the other measures is that you 
can talk about the position of a single datum in the data set, but you can’t talk about the 
central tendency or variation of a single datum.  Each member of the set can be located, 
for instance, according to its percentile – what percent of the set consists of numbers less 
than or equal to it.  This is familiar to us from standardized tests and from pediatricians’ 
offices, where parents are told the percentile of their child’s height and weight.   

 
The fact that individual data points have position leads to the idea of an outlier – 

a number which is so different in size from the others that you might wonder if it’s a 
mistake or simply unusual.  We have a way of deciding whether a number is an outlier or 
not that utilizes the concept of quartiles. 

 
There are two ways of being an outlier – being very small or being very large.  

The criterion for the former is that the datum, x, must satisfy this condition: 
 

( )IQRQx 5.11 −<  
 

In other words, the datum must be more than one and a half interquartile ranges below 
the first quartile.  For the heights in the Class Data Base, for which 𝑄𝑄1 = 63.5 and 𝑄𝑄3 =
69, so that the interquartile range is 69 − 63.5 = 5.5, this amounts to 
 

𝑥𝑥 < 63.5 − 1.5(5.5), or x < 55.25 inches. 
 
 The corresponding criterion for the large outliers is to go one and a half 
interquartile ranges above the third quartile and consider numbers larger than that: 
 

( )IQRQx 5.13 +> , or in our case 
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          𝑥𝑥 > 69 + 1.5(5.5), or x > 77.25 inches. 
 

The 55.25 is the lower limit for outliers, and the 77.25 is the upper limit.  So a 
height of 55 inches or less is an outlier on the small end, and 78 inches or more is an 
outlier on the large end. Some data sets have outliers, and some don’t.  The height data 
set had no outliers, since the minimum height was 60 inches and the maximum 77 inches.  
As mentioned above, outliers might be mistakes or simply unusual values of the variable; 
it’s up to the researcher to investigate which category the outliers fall in. 

 
 To use a different category from the Class Data Base, consider the number of 
pets.  Here 𝑄𝑄1 = 0 and 𝑄𝑄3 = 3, so the interquartile range is 3 − 0 = 3.  Small outliers 
would be numbers of pets, x, for which 
 

𝑥𝑥 < 0 − 1.5(3) = −4.5, 
 
certainly a very unlikely, actually impossible, number of pets to have. 
 
 Unusually large numbers of pets would be those for which  

 
𝑥𝑥 > 3 + 1.5(3) = 7.5, 

 
in other words 8 or more pets, unusual maybe, but not impossible.  And in fact our set has 
two outliers, 30 and 19, as can best be seen by sorting the data from highest to lowest. 
 
 So data sets can have no outliers at all, or a couple, or a few, but not too many or 
they wouldn’t be unusual.  Also, if the data are generally widely spread, this will make 
the IQR large, which will make the lower limit small and the upper limit large, and these 
limits will be hard to get by.   
 
Z-scores or Standard Scores  
 
 So far we’ve talked about measures of position that depend on the median and, by 
extension, the quartiles and percentiles.  Now we’ll consider a measure of position 
determined by the mean, and its little friend the standard deviation. 
 
 The basic approach is to make a scale in which the mean is at the middle and units 
are marked off using the standard deviation.  Say what?  Well, let’s take an example with 
simple numbers, say 10=x  and 2=s .  Then 12210 =+=+ sx , and we say that 12 is 
one standard deviation above the mean.  Likewise 8210 =−=− sx , so 8 is one 
standard deviation below the mean.  And we can go on like that.  Here’s a labeled 
number line: 
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 This is totally different from the example in which we pretended we had written 
500 numbers in order from smallest to largest.  There, the space between numbers on the 
line represented frequency – how many data points fell between two values – but here the 
space between numbers is a true scale, with the units being the standard deviation of the 
set.   
 
 We can talk about the interval of data within one standard deviation of the 
mean.  This is, mathematically speaking, the interval ( )sxsx +− , , using interval 
notation which you may remember from algebra.  In the example above, this amounts to 
the interval ( )12,8 ; in other words all the numbers between 8 and 12 are within one 
standard deviation of the mean.  I know that in algebra we make a big distinction 
between open and closed intervals, ones that don’t contain the endpoints and ones that 
do, and that we use square brackets [ ] for the latter, but here we’re just going to use 
parentheses and kind of gloss over the distinction. 
 
 Intervals of data within two standard deviations of the mean look like 
( )sxsx 2,2 +− , in our example ( )14,6 .  Intervals of data within three standard 
deviations of the mean are ( )sxsx 3,3 +− , or ( )16,4 .  Numbers between 4 and 16 are 
said to be within three standard deviations of the mean.   
 
 Each member of the data set has associated with it something called a z-score 
(you’ll see what the z means later) or a standard score.  It tells how many standard 
deviations the datum is from the mean.  Here I’ve put the z-scores beneath the line: 

 
 
 All members of the data set have a z-score, and here’s the formula for a datum, x: 

s
xxz −

=  

See how it works, say for 14: 
 

2
2

1014
=

−
=z . 

 
If a datum is smaller than the mean, its z-score is negative; if it’s bigger than the mean, 
its z-score is positive, and if it’s equal to the mean, its z-score is equal to 0, because 

00
==

−
=

ss
xxz .  Just be sure that you enclose the numerator in parentheses if you’re 

calculating the z-score on your calculator, because you want to subtract before you 
divide.  If you try 

2
1014 −

=z  and get 9, it’s because you didn’t do that; the calculator 

thought you wanted to divide 10 by 2, which gives 5, and then subtract the 5 from 14 
(because that’s what you told it to do).   
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 Just like giving the percentile of a member of a data set is a way of measuring its 
position, giving the z-score is another way of doing so.  Let’s look at the height data set.  
�̅�𝑥 = 66.224 inches, and 𝑠𝑠 = 4.117 inches.  Again, I’m using more decimal places of 
these statistics than just one, and that’s because I’m using them in further calculations 
and want to be as accurate as possible. 
 
 What’s the z-score of a person who is 72 inches tall? 
 

𝑧𝑧 =
𝑥𝑥 − �̅�𝑥
𝑠𝑠

=
72 − 66.224

4.117
≈ 1.40296 ≈ 1.40 

 
We rounded the z-score to the nearest hundredth because that’s how it’s done – a 
hangover from the olden days when we had to use tables of z-scores (don’t worry about 
why) which listed the z-scores that way.   
 
 At any rate, a person whose height is 72 inches has a height which is 1.40 
standard deviations above the mean.  How about a person who is 63 inches tall? 
 

𝑧𝑧 =
𝑥𝑥 − �̅�𝑥
𝑠𝑠

=
63 − 66.224

4.117
≈ −0.78309 ≈ −0.78 

 
This person’s height is 0.78 standard deviations below the mean.  The z-score came out 
negative because the person’s height is shorter than the mean height. 
 
 
Outliers Revisited 
 
 Can we define outliers in terms of their z-scores, in other words use the mean and 
standard deviation to set up some formula the way we did with 1Q  and 3Q ?   I’d say that 
anything with a z-score of less than 3−  or more than 3 is an outlier, but this isn’t a hard-
and-fast rule.  There’s something called Chebychev’s Theorem, named after the Russian 
mathematician with the marvelous first name of Pafnuty (1821-1894), which sets limits 
on what fraction of a data set can lie outside an interval of data within a certain number of 
standard deviations of the mean, but his result is weak compared to what happens when a 
data set is normally distributed (you may know this as “bell-shaped”), which we’ll 
spend a huge amount of time on later in this course.  In that case, only three-thousandths 
of the data points can have a z-score of less than 3−  or more than 3, so I’d certainly call 
those numbers outliers, but maybe that’s too strict a definition.  Take it down to a z-score 
of less than 2−  or more than 2 and you’re up to 4.6% of the data points outside this 
interval.  Maybe that’s too inclusive.  Enough of this for now. 
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Activity #6:  Outliers, intervals of data, and z-scores 

Using the age data from the Class Data Base,  

1) Use the formula involving 1Q  and 3Q  to find the limits for outliers.  How many 
outliers does the data set have? 

 
 
 
 
 

2) State to the nearest tenth the interval of data within 3 standard deviations of the 
mean. 

 
 
 
 
 
 

3) To the nearest hundredth find the z-scores for these ages.  Use values for x and s 
correct to the nearest thousandth in making your calculations, or use the Variables 
function on your calculator. 
 

a) 18 years old 
 
 
 

b) 29 years old 
 
 
 

c) 43 years old
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Worksheet #8: Quartiles, Percentiles, etc.  
 
If a set of numbers contains 600 members, how many members of the set are 

1) Between the minimum and 𝑄𝑄3? 

2) Between 𝑄𝑄1 and the median? 

3) Between the median and the maximum? 

4) Between 𝑄𝑄1 and 𝑃𝑃42? 

5) At most 𝑃𝑃56? 

6) Between 𝑃𝑃21 and the median? 

7) Between 𝑃𝑃72 and 𝑃𝑃96? 

8) At least 𝑃𝑃16? 

9) Between 𝑃𝑃12 and 𝑄𝑄3? 

10) At least 𝑃𝑃82? 

In a set of 1,500 numbers, Q1 is 43, the median is 78, Q3 is 102, P14 is 38, P32 is 51, P65 
is 84 and P90 is 131.  How many members of the set are 

11)  At most 38? 

12)  At least 43? 

13)  Between 51 and 78? 

14)  Between 38 and 84? 

15)  Between 84 and 131? 

16)  At least 51? 

17)  At most 102? 

18)  Between 43 and 84? 

19)  Between 102 and 131? 

20)  Between 78 and 84? 
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Worksheet #9: Outliers  
 

For each data set, give the limits for the outliers and list all outliers. 
 

1) This is a set of ages, given in years. 

23 
19 
60 
19 
21 
23 
35 

 
2) This is a set of numbers of pets. 

1 
12 
8 
4 
1 
0 
3 
7 

 
3) This is a set of heights, given in inches. 

70 
70 
75 
73 
61 
69 
 
 

4)  This is a set of shoe sizes. 
 

9 
10.5 
15 
5 
9.5 
11 
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Worksheet #10: Intervals of Data within a Certain Number of                  
Standard Deviations of the Mean 

 
For a sample in which the mean is 34.3 years and the standard deviation is 4.1 years, find 
the interval of data within: 
 

1) One standard deviation of the mean 
 

2) Two standard deviations of the mean 
 

3) Three standard deviations of the mean 

 
 
For a sample in which �̅�𝑥 = 14.8 ft, and s = 5.9 ft, find the interval of data within: 
 

4) One standard deviation of the mean 
 

5) Two standard deviations of the mean 
 
6) Three standard deviations of the mean 

 
For a population in which the mean is 234.9 g and the standard deviation is 56.7 g, find 
the interval of data within: 
 

7) One standard deviation of the mean 
 

8) Two standard deviations of the mean 
 

9) Three standard deviations of the mean 

  
For a population in which 𝜇𝜇 = 78.3 minutes and 𝜎𝜎 = 17.4 minutes, find the interval of 
data within: 
 

10) One standard deviation of the mean 
 

11) Two standard deviations of the mean 
 

12) Three standard deviations of the mean 
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Worksheet #11: Standard Scores (Z-Scores) 
 

Round all z-scores to the nearest hundredth. 
 
For a sample in which the mean is 34.3 years and the standard deviation is 4.1 years, find 
the standard score for: 
 

1) 18 
 

2) 27 
 

3) 36 
 
4) 45 

 
For a sample in which �̅�𝑥 = 14.8 ft and s = 5.9 ft, find the z-score for: 
 

5) 8.3 
 

6) 13 
 
7) 17.7 
 
8) 32.1 

 
 
For a population in which the mean is 234.9 g and the standard deviation is 56.7 g, find 
the z-score for: 
 

9) 152 
 

10) 219 
 

11) 252.8 
 
12) 301 

 
For a population in which 𝜇𝜇 = 78.3 minutes and 𝜎𝜎 = 17.4 minutes, find the z-score for: 
 

13) 15 
 

14) 66.4 
 

15) 81 
 

16) 127.8 



51 

Exam #1 – Descriptive Statistics – Sample – Covers Lectures #1-6 
 
For a study of climates, 200 days in September during the past century are selected at 
random and the high temperature in Ukiah for the day is recorded.  For these days,

9.81=x F and 4.7=s F.  The lowest high temperature was 52 F and the highest was 
107 F.  (Use in Problems #1-5.) 

 
1)  Write a paragraph with complete sentences correctly using each of the following  
words that can be used to describe the situation.  Underline the words you use from this 
list 

Experimental Study 
Observational Study 
Population      Mean   
Sample       Median 
Parameter      Mode 
Statistic      Midrange 
Quantitative Variable    Range 
Qualitative Variable    Standard Deviation 
Discrete Variable     Variance 
Continuous Variable    Interquartile Range 
Nominal Level of Measurement   Coefficient of Variation  
Ordinal Level of Measurement    
Interval Level of Measurement 
Ratio Level of Measurement   
Measure of Central Tendency         
Measure of Variation 
Measure of Position  

 
 
 
 
 
 
2) Find the z-score to the nearest hundredth of a temperature of 63 . 
 
 
3) Find the interval of temperatures that are within two standard deviations of the mean. 
 
 
4) If 751 =Q , on how many of the days was the high temperature between 75  and 107
? 
 
 
5) If 6415 =P ,  on how many of the days did the temperature rise to 64  or above? 
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6) For the data set below, the ages in years of five homes sold during one month in a 
certain city, find the sample standard deviation to the nearest tenth using the table 
method. 
 
34 
11 
29 
6 
10 
 
 
 
 
7)  For the data set below, the ages of homes sold during one month in a different city, 
use your calculator to find 

a. the sample mean 
b. the sample standard deviation 
c. the median 
d. the interquartile range 
e. the sample variance 
f. the midrange, and 
g. the sample coefficient of variation 

            Round (a) through (f) to the nearest tenth if necessary, and round (g) to the nearest 
hundredth. 
 
38 
40 
4 
25 
29 
33 

 
 

8) Using the data set in Problem #7, find the limits for the outliers and list all outliers. 
 
 
 
 
 
 
 
9) If a group consists of 18 part-time students, with an average GPA of 2.948, and 47 
full-time students, with an average GPA of 3.445, what is the average GPA of the whole 
group to the nearest thousandth?
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Exam #1 – Descriptive Statistics – Sample – Solutions 
 
1) An observational study is conducted in which a sample of 200 daily high temperatures 

in Ukiah during September in the past century is selected from the population of daily 

high temperatures in Ukiah during September in the past century.  Temperature is a 

quantitative, continuous variable at the interval level of measurement.  Statistics reported 

include the mean, which is 81.9 o F and the standard deviation, which is 7.4 o F.  The 

variance is 54.76 (the square of 7.4), and the coefficient of variation  is 9% (obtained by 

dividing 7.4 by 81.9).  The midrange is 79.5o F (obtained by taking half the sum of the 

minimum, 52o F, and the maximum, 107o F). The range is 55o F (the difference of the 

maximum and the minimum). The mean and the midrange are measures of central 

tendency.  The standard deviation and the range are measures of variation. The minimum 

and the maximum are measures of position. 

 
2) 554.2

4.7
9.8163

−≈
−

=
−

=
s

xxz .  To the nearest hundredth:  −𝟐𝟐.𝟓𝟓𝟓𝟓  

 
3) ( ) ( ) ( )( ) ( )7.96,1.674.729.81,4.729.812,2 =+−=+− sxsx .  ( )FF  7.96,1.67  
 
4) One-fourth of the temperatures are less than or equal to 1Q , so three-fourths are 
between 1Q  and the max (between 75o and 107o).  ¾ of 200 is 150. 
 
5) Fifteen percent of the temperatures are less than or equal to 15P , so 85% are equal to or 

greater than 15P  (64o).  85% of 200 is 170. 
 
6) 
  
x xx −  ( )2xx −  
34 16 256 
11 7−    49 
29 11 121 
 6 12−  144 
10 8−    64 

 
�

18
5

90
==x  

( )
5897.12

4
634

15
634

1

2

≈=
−

=
−

−
= ∑

n
xx

s .  To the nearest tenth, 12.6. 



54 

 
 
7) a) 28.2 

b) 13.1 

c) 31 

d) 132538 =−  

e) 13.0752 ≈ 171.0, or 13.12 ≈ 171.6 

f) 22
2
404

=
+  

g) 13.075
28.167

≈ 0.46 = 46%, or 13.1
28.2

≈ 0.46 = 46% 

 

8) Limits on outliers:   ( )IQRQx 5.11 −< , or ( ) 5.5135.125 =−<x  

   ( )IQRQx 5.13 +> , or ( ) 5.57135.138 =+>x  

4 is an outlier. 

 

9) 
( )

( ) 307.3
4718

445.347948.218
≈

+
×+×
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Lecture #7:  Probability:  Sample Spaces and Contingency Tables 
 
 The way we approach probability was thought up by an Italian mathematician 
named Gerolamo Cardano (1501-1576), who invented it to help himself make a living by 
gambling.  His theory was further developed by the French mathematicians Pierre de 
Fermat (1601 or a few years later-1665) and Blaise Pascal (1623-1662).  They figured out 
a way to divide the stakes fairly in a game of chance which is interrupted before it can be 
finished.  I’m telling you this because it puts a human face on the whole subject. 
 
 The first idea is that of a probability experiment, which is a general term for 
something you do that results in a certain outcome.  It’s easier to understand with an 
example:  You flip a coin.  It lands with heads or tails up (we don’t consider it ever 
landing on an edge).  It’s one or the other, each time you flip it.  Landing with heads up is 
an outcome, and so is landing with tails up.  Let’s label these outcomes H and T.  Then 
the set {H, T} is called the sample space, S, of the experiment.  The number of outcomes 
in the sample space is its size, and our notation for this is the function notation ( )Sn , 
pronounced “n of S.”  So S = {H, T} and ( ) 2=Sn  in this experiment.  Not so hard. 
 
 How about if your experiment is rolling a die (the singular form of “dice”)?  Then 
there are six possible outcomes – the 1 is facing up, the 2 is facing up, etc. – and we can 
write S = {1, 2, 3, 4, 5, 6}, and ( ) 6=Sn . 
 
 What about picking a card from a standard 52-card deck?  Well, here you have to 
specify what the experiment is.  Are you looking at which suit you got?  If so the sample 
space is S = {Club, Diamond, Spade, Heart} and ( ) 4=Sn .  If you’re looking at what 
rank you got, S = {2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, King, Ace} and ( ) 13=Sn .  If 
you’re looking at both aspects, suit and rank, then S = {2 of Clubs, 3 of Clubs, … , King 
of Hearts, Ace of Hearts} and ( ) 52=Sn .  Or you could be looking to see if the card is 
red or black, in which case S = {Red, Black} and ( ) 2=Sn .  Or you could be looking to 
see if you got a face card (jack, queen, or king) or not, and S = {Face Card, Not Face 
Card} and ( ) 2=Sn .  We could probably go on like this for quite a while, but you get the 
idea.  The sample space and its size depend on what aspect of the card you’re focusing 
on. 
 
 One further concept is called an event.  An event, E, is some set or collection of 
the outcomes in a sample space (or maybe none of the outcomes).  For example, with 
rolling a die, we could talk about the event “rolling an even number.”  Then E = {2, 4, 6}. 
We call its size ( )En .  In this case, ( ) 3=En .  Here’s another event:  “rolling at least a 
5.”  Here E = {5, 6} and ( ) 2=En .  The event could encompass the entire sample space – 
“rolling less than a 7,” which is E = {1, 2, 3, 4, 5, 6} and ( ) 6=En , or could have 
absolutely no outcomes – “rolling more than a 6,” which is E = { }, or φ , which is the 
mathematical symbol for the empty set, and ( ) 0=En .  Anything you can describe could 
be an event, or you could just list the outcomes in the event without describing what they 
have in common. 
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 Now we’ll move on to the probability experiment of flipping two coins and 
seeing what sides are face up.  We have to have some way of distinguishing the two 
coins.  Maybe one is a dime and the other is a quarter.  Or one could be gold and the 
other could be silver.  Or one is named Coin #1 and the other Coin #2.  When I refer to 
the outcome HH, I mean both were heads.  When I mention HT, I mean that the first coin 
came up heads and the second one tails, but when I write TH, I mean that the first coin 
came up tails and the second one heads.  This is an important distinction to remember. 
 
 So what’s the sample space?  S = {HH, HT, TH, TT}, and ( ) 4=Sn .  We could 
talk about the event “getting exactly two heads.”  Let’s give this event the notation 2H.  
Then 2H = {HH}, and ( ) 12 =Hn .  Using similar notation, we get 1H = {HT, TH}, and 
( ) 21 =Hn .  And, of course, 0H = {TT}, and ( ) 10 =Hn . 

 
 How about flipping three coins?  Well, the sample space is S = {HHH, HHT, 
HTH, THH, HTT, THT, TTH, TTT}, so ( ) 8=Sn .  (If you’re seeing a pattern of the sizes 
of the sample spaces here, good for you!  Yes, for one coin it’s 221 = , for two coins 

422 = , and for three coins 823 = .)  Here are the events of getting various numbers of 
heads, and their sizes: 
 
 3H = {HHH},    ( ) 13 =Hn  
 2H = {HHT, HTH, THH},  ( ) 32 =Hn  
 1H = {HTT, THT, TTH}, ( ) 31 =Hn  
 0H = {TTT},   ( ) 10 =Hn  
 
 Having set up the structure of the sample space, outcomes, and events, we can 
finally get to probability.  And this is classical probability, which simply means that all 
outcomes are equally likely to occur each time you perform the experiment.  The 
coins are fair, which means that they’re equally likely to land with the heads up or the 
tails up each time they’re flipped; the dice are fair, which means….well, you get the idea.  
It doesn’t mean that on every two flips you’ll get one head and one tail, or that every six 
rolls of a die will yield a 1, a 2, etc.  It just means that in the long run the outcomes will 
even out in frequency.  (Much later in the course we’ll talk about how you can show that 
certain dice aren’t fair, or if you can’t show that then you’ll conclude that maybe they 
are fair.) 
 
 We talk about the probability of an event, E, occurring. This is a number 
between 0 and 1 – always!  We write ( )EP , pronounced “P of E,” in the manner of 
function notation.  So we can write 
 

( ) 10 ≤≤ EP  
to express the fact that the probability of an event is between 0 and 1.  It’s 0 if the event is 
impossible (like rolling a 7 with one die), it’s 1 if it’s a sure thing (like rolling a number 
less than 7 with one die), and, if it might or might not happen (what we call a conditional 
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event), it’s bigger than 0 and less than 1.  And the closer the probability is to 1 the more 
confident we are of it happening.   
 
 So here’s the formula for determining the probability of an event E: 

( ) ( )
( )Sn
EnEP = . 

In other words, the probability is the fraction of the outcomes in the sample space that are 
also in the event.   
 
 Let’s go back to rolling the die.  The probability of rolling a 4 is 1

6
, because there’s 

one outcome in the event “rolling a 4” and 6 in the sample space of “rolling a die.”  The 
probability of rolling at least a 5 is 2

6
.  The probability of rolling an even number is 3

6
. 

 
 Let’s look at the coin flipping.  Refer to the sample spaces and their sizes, and to 
the events of getting a certain number of heads and their sizes to get these results: 
One coin: 
 ( )

2
11 =HP  

 ( )
2
10 =HP  

Two coins: 
 ( )

4
12 =HP  

 ( )
2
1

4
21 ==HP   

 ( )
4
10 =HP  

Three coins: 
 ( )

8
13 =HP  

 ( )
8
32 =HP  

 ( )
8
31 =HP  

 ( )
8
10 =HP  

 The numerators of these probabilities form some amazing patterns, which you 
may be familiar with if you know about Pascal’s Triangle.   
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Empirical Probability and Contingency Tables 
 
 Think about how the probability formula is dependent on the notion of fairness, or 
equally-likely outcomes.  If a coin weren’t fair, we couldn’t say that ( )

2
11 =HP .  We 

would have no idea what the probability of getting a head would be, except by flipping 
the coin many, many times and seeing what fraction of the flips come up heads.   
 
 In other words, we’d have to observe what actually happens.  This is the basis for 
empirical probability, in which probabilities are determined not by sample spaces with 
equally-likely outcomes but by observing the fraction of times the probability experiment 
(like flipping the coin) comes out one way or another.  The word “empirical” comes from 
a Greek word meaning experienced.  Empirical probability is the result of experience, not 
deduction. 
 
 This might lead you wonder how we can call a coin fair if not by using empirical 
probability, by flipping it lots of times.  It would be possible to make a coin without any 
markings, except maybe for labels of heads and tails written in very light-weight ink, and 
with uniform density and symmetry, and then we could assume that it is fair because of 
the physics of flipping it.  (Although I once saw a remarkable video in which a person 
was able to flip a supposedly fair coin in such a way that it always came up heads – but 
he always started flipping with the coin in the same position, and he was able to impart 
the same momentum each time, so I don’t think this is really a counterexample.)   
 
 Later in the course we’ll see how we can conclude that certain processes (rolls of 
dice is what we’ll use) are most likely fair or not using empirical probability, but for now 
we’ll just say that the assumption of fairness is an abstract one that enables us to develop 
the classical theory of probability using equally-likely outcomes. 
 
 Now we’re going to look at one example of empirical probability, and we’re just 
going to make a start on it.  It’s called a contingency table, and it’s a way of tabulating 
two pieces of data for each subject in the sample, where both variables are categorical.  
(If you’re tabulating two pieces of data in which the variables are quantitative, you use a 
scatter plot.)  For instance, looking at the Class Data Base we might wonder whether 
there are differences between men and women in their attitudes toward social media.  
You might get some idea of this by just looking at the numbers listed for the men and for 
the women, but it would be hard to draw conclusions from just the lists.  So we 
categorize each person in the data base by their sex and by their attitude, and we present 
the results in a neat table. 
 
 Immediately we encounter a problem and need to establish protocols, sets of 
rules to determine our classification system.  We could have five categories of attitudes, 
but I think it makes more sense to classify them as Negative, Neutral, and Positive.  A 
rating of 1 or 2 will count as Negative, 3 will be Neutral, and 4 and 5 will be Positive.   
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  Attitude toward Social Media 
  Negative Neutral Positive 

Sex Male    
Female    

  
Now we’re ready to put numbers in the six cells in the table.  We could start with tally 
marks, looking at each line in the Class Data Base and putting a tally mark in the correct 
box.  For instance, Person #1, being a male whose attitude was a 2, would be tallied in the 
upper left box.  When we finish, the table would look like this: 
 
  Attitude toward Social Media 
  Negative Neutral Positive 

Sex Male 6 9 14 
Female 2 17 28 

 
 
That’s all we’ll do with the contingency table this time, just tabulate it.  I hope you agree 
that it makes the patterns of attitudes toward social media of the two sexes a lot more 
apparent.  I see some differences in the patterns.  This is just the beginning of the kind of 
analysis we’ll be doing.



60 

Activity #7:  Sample space and probabilities for tossing four coins;                          
   making a contingency table 
 

1) Write the sample space for flipping four coins; then find ( )HP 4 , ( )HP 3 , ( )HP 2

, ( )HP 1 , ( )HP 0 .  Remember that ( ) 1624 ==Sn , so there should be 16 
outcomes in the sample space. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2) Make a contingency table with the following categories: 
 
  Number of Pets 
  No Pets 1 or 2 Pets 3 or 4 Pets At Least 5 Pets 

Sex Male     
Female     
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Worksheet #12: Sample Spaces  
 

Use this situation to answer the questions: 
 
You have two spinners.   
 
One points to one of five letters, 1, 2, 3, 4, and 5.   
 
The other points to one of four letters, W, X, Y, Z.   
 
Both spinners are equally likely to point to any of their numbers (or letters) every time 
they are spun.   
 
1) List all the elements of the sample space for this experiment.  For instance, use 1W 

for the outcome of getting a 1 and a W. 
 
 
 
 
 
2) What is the probability that you get a 3 and an X? 
 
3) What is the probability that you get a 3 or an X? 
 
4) What is the probability that you get an odd number and a Z? 
 
5) What is the probability that you get an odd number or a Z? 
 
6) What is the probability that you get an even number and a Y? 
 
7) What is the probability that you get an even number or a Y? 
 
8) What is the probability of not getting a W? 
 
9) What is the probability of spinning at least a 2? 
 
10)  What is the probability of spinning at most a 2? 
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Lecture #8:  Rules of Probability  
 

Before we tackle the rules of probability, let’s look at how we apply the concept 
of probability to an empirical probability situation like the contingency table we 
developed in the last lecture.   

 
To begin with we add up the frequencies in the rows of cells to get the row totals 

(for instance, 6 + 9 + 14 = 29) and the frequencies in the columns of cells to get the 
column totals (for instance, 6 + 2 = 8), and then add the row totals – or the column 
totals, because you’d better get the same result – to get the grand total, which is 76. 

 
 

 
  Attitude toward Social Media  
  Negative Neutral Positive Sum 

Sex Male 6   9 14 29 
Female 2 17 28 47 

 Sum 8 26 42 76 
 
 

 The calculation of probabilities is based on the situation that one person out of the 
76 in the group is selected at random.  The probability that the person selected has 
whatever characteristics are specified is given by the formula 

n
f , where f is the 

frequency or number of people having the characteristics and n is, as usual, the size of the 
sample, or in this case the grand total, 76.  So the probability that a randomly selected 
person is male is 29

76
.  We could use the notation P(Male) = 29

76
.  What’s the probability that 

the person selected has a negative attitude toward social media?  P(Negative) = 8
76

.  A 

neutral attitude?  P(Neutral) = 26
76

.  (Let’s leave these fractions unreduced; I’m sure you 
won’t mind.)   

 What about the probability that the person selected has an attitude which is not 
positive?  I’m sure you can see that there are two ways to go about finding it:  either total 
the frequencies for the negative and neutral attitudes to use as f, or subtract the frequency 
for the positive attitude from the grand total.  Either way, P(Not Positive) = 34

76
.   

Events like “having a positive attitude” and “having an attitude which isn’t 
positive” are called complementary events, because they complement, or complete, 
each other.  (Watch out for the spelling – this is not the word for saying nice things about 
someone or something.  That word is spelled “complimentary.”)  Every member of the 
group who is not represented in one of the events is represented in the other; there are 
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only two groups.  If we call one of the events E , then its complement is represented by 
E , pronounced “the complement of E.” 

There’s a rule about E  and E .  As you can see, P(Positive) + P(Not Positive) = 
42
76

 + 34
76

 = 76
76

= 1.  (You can see the advantage of not reducing the fractions.)   So the 
general rule is P( E ) + P( E ) = 1, or P( E ) = −1 P( E ), which was the second way we 
used to calculate P(Not Positive).    

One more rule which I mentioned last time is that probabilities are always 
numbers between 0 and 1, inclusive (inclusive means that they could equal 0 and they 
could equal 1).  You can see why that’s true in the empirical case where the probability 
of an event equals 

n
f  --  f is a number between 0 and n, since f is how many of the 

outcomes of the sample of size n are in the event.  (In classical probability, the 

probability of an event was 
( )
( )Sn
En

 , so the same reasoning applied.) 

 

And, Or, and Given 

Now we’re going to examine closely three very common little words which have 
precise meanings in probability.   

The first is and.  You probably think you know what it means.  If I say I’m going 
out to dinner and to a movie, the only way this statement can be true is if I do go out to 
dinner and I do go to a movie.  If I go out to dinner but don’t go to a movie, or if I don’t 
go out to dinner but I do go to a movie, or if I don’t go out to dinner and I don’t go to a 
movie, it’s not true. 

To belabor the point a little, label the statement “I’m going out to dinner” A, and 
the statement “I’m going to a movie” B.  Then we can make a truth table: 

 
A B A and B 
T T T 
T F F 
F T F 
F F F 

I think its meaning is pretty obvious. 

Referring now to the contingency table, if we want to know the probability that 
the person we select randomly is both male and had a positive attitude, we see that there 
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are 14 people in the upper-right cell, so P(Male and Positive) = 14
76

 .  It should be pretty 

clear that P(Female and Neutral) = 17
76

. 

You probably could have gotten these without all the discussion of dining out and 
movies and truth tables, but when we get to the next little word, or, it turns out to be 
more complicated, and the discussion might help.  That’s because there are two ways in 
which or is used, and in statistics we use it in the less common way.  If I say I’m going 
out to dinner or to a movie, you might be surprised if it turns out that I went out to dinner 
and to a movie, because you’re used to what’s called the exclusive or, or the either/or.  
This is where you can do one or the other but not both.  Its truth table looks like this: 

 
A B A or B 
T T F 
T F T 
F T T 
F F F 

 But we’re going to use or in the inclusive sense, the and/or.  (You may know 
about this distinction from computer science.)  Here it’s okay to do both, and the only 
way the statement would be false if I did neither: 

 
A B A or B 
T T T 
T F T 
F T T 
F F F 

  

 Back to the contingency table.  What is the probability that the person we select 
randomly is male or had a positive attitude?  The group in question would include the 14 
males who had a positive attitude, the 9 males who were neutral, the 6 males who had a 
negative attitude, and the 28 females who had a positive attitude: 14 + 9 + 6 + 28 =  so 
P(Male or Positive) = 57

76
. 

 But aren’t you tempted just to add the row total of the males, 29, and the column 
total of those with a positive attitude, 42, and get 71

76
?  What’s wrong with doing that?  

Well, you’ve counted some people twice, namely those who qualify both because they’re 
male and because they had a positive attitude.  This group got double-counted.  We could 
correct this by subtracting 14 from our f to eliminate the double-counting, and since 71 −
14 = 57, our answer would now match the one we got by adding up the frequencies of 
the four cells. 
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 There’s a formula for that, again using A and B as the events: 

P(A or B) = P(A) + P(B) – P(A and B) 

In our example that comes to  

 P(Male or Positive) = P(Male) + P(Positive) – P(Male and Positive) 

            =   29
76

      +      42
76

        –         14
76

          =        57
76

 

 You can do these or problems either way, by adding up the frequencies of the 
relevant cells or by adding up the row and column totals and then subtracting the 
frequency of the cell that was counted twice.   

 By the way, the formula P(A or B) = P(A) + P(B) – P(A and B) works for both 
empirical and classical probability. 

 How about this one:  What is the probability that the person we select randomly 
had a positive attitude or a negative attitude?   I think you know intuitively that you’d 
add the column total for Positive, 42, and the column total for Negative, 8, and get an 
answer of  50

76
.  But if you wanted to use the formula for P(A or B), what happened to the 

part where you subtract P(A and B)?  I don’t think it’s a mystery, because since nobody 
was allowed to pick more than one number for his/her attitude, the probability of a single 
person having both a positive attitude and a negative attitude is 0, and you would just 
have been subtracting 0, which makes no difference.   

 We have a name for events whose joint probability (the and probability) is 0:  
They’re called mutually exclusive.  If one happens, the other can’t, and vice versa.  
Neither can happen, but both can’t.   

 Now for given.  This word is used in what’s called conditional probability, 
which we’re just going to touch on.  If I ask what the probability is that the person we 
select randomly had a positive attitude given that the person is female, I’m giving some 
information about which person was selected by the phrase that comes after the given:  it 
was a woman.  So the n in the formula 

n
f  is no longer 76, but rather 47, the number of 

women.  We were able to reduce the denominator to the frequency of the group following 
the given, because of our extra knowledge.  So  

P(Positive given Female) = 28
47

. 

The numerator refers to those women who had a positive attitude, but now they’re being 
viewed as part of the group consisting solely of women, because we know that’s where 
they’re being chosen from. 

 Compare this to what happens if we reverse what comes before and after the 
given.  What is the probability that the person we select randomly is female given that 
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the person had a positive attitude?  Now we know we picked one of the people with a 
positive attitude, so the denominator is 42.  The numerator remains the same, because it’s 
the same 28 women who had a positive attitude.  So 

 P(Female given Positive) = 28
42

.  

Just remember that the denominator is given by the row or column total of the 
characteristic that comes after the given and you can’t go wrong.  Here’s a general 
formula): 

 P(A given B) =  P(A and B) / P(B). 

This formula also works for both empirical and classical probability.   

 What’s the probability that the person we select randomly is male, given that the 
person had a negative attitude?  P(Male given Negative) = 6

8
.  That the person we select 

randomly had a negative attitude, given that the person is male?  P(Negative given Male) 
= 6
29

. 

 

 

Independent Events 

 Since we have a formula for P(A or B) and for P(A given B), you might wonder 
whether there’s one for P(A and B).  It turns out that there is such a formula, and it is 
P(A and B) = P(A) x P(B), but it works only if the events are what are called 
independent events, which roughly means that whether one happens has no influence at 
all on whether the other does or does not happen.  Mutually exclusive events, for 
instance, are never independent, because if one happens the other can’t, a rather extreme 
form of influence. 
 
 
 
   

Probability Rules for Classical Probability 

 Now we’re going to return to dice rolling.  You may have been surprised to find 
that the sums from 2 to 12 occurred with such different frequencies, that in fact you most 
likely ended your rolling because you ran out of room for 6’s, 7’s or 8’s. 

 Let’s see why that is.  Here’s the chart for rolling two dice: 

 
  Die #2 
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  1 2 3 4 5 6 
 1 1,1 1,2 1,3 1,4 1,5 1,6 
 2 2,1 2,2 2,3 2,4 2,5 2,6 

Die #1 3 3,1 3,2 3,3 3,4 3,5 3,6 
4 4,1 4,2 4,3 4,4 4,5 4,6 

 5 5,1 5,2 5,3 5,4 5,5 5,6 
 6 6,1 6,2 6,3 6,4 6,5 6,6 

Of the 36 outcomes, how many result in a sum of 2?  Only one, the 1,1.  Same for 12, 6,6.  
So assuming the dice are fair, which means that all outcomes are equally likely to occur 
(the premise of classical probability), P(2) = P(12) =  

36
1 .  Dice are arranged such that the 

opposite sides add up to 7:  the 1 and 6 are on opposite sides, as are the 2 and 5, and the 3 
and 4.  So getting 1,1 facing up means you’ve got 6,6 facing down.  No wonder P(1) = 
P(12). 

 Here’s the dice table with the outcomes replaced by the sums of the two dice: 

 
  Die #2 
  1 2 3 4 5 6 
 1 2 3 4 5 6 7 
 2 3 4 5 6 7 8 

Die #1 3 4 5 6 7 8 9 
4 5 6 7 8 9 10 

 5 6 7 8 9 10 11 
 6 7 8 9 10 11 12 

From this you can see that P(3) = P(11) = 
36
2 , P(4) = P(10) =  

36
3 , P(5) = P(9) =  

36
4 , P(6) 

= P(8) =  
36
5 , and, finally, standing alone on the minor diagonal (upper right to lower 

left), P(7)  =  
36
6 .  Notice that the numerators in these probabilities increase by one as the 

diagonals get longer from 2 to 7 and then decrease by one as the diagonals get shorter 
from 7 to 12.   

 You can see why 7 should be the most common sum:  more outcomes yield a sum 
of 7 than any other sum.  But 6 and 8 are not far behind. 

 (Let me just explain why I think it unlikely that the dice you used are fair.  The 
pips – or dots – are really little craters; these are dollar-store dice.  In the dice used in 
casinos, the craters are back-filled with a material of a different color but the same 
density as the rest of the die.  But in these cheap ones, the sides with more pips are less 
dense and therefore lighter than the sides with fewer pips.  So the force of gravity acts 
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unevenly on the die and makes it more likely to end up with a larger number facing up 
and a smaller one facing down – more 6’s up than 1’s, to a lesser extent more 5’s than 
2’s, and to an even lesser extent more 4’s than 3’s.  But later in the course we’ll see if the 
craters make enough of a difference to justify calling the dice unfair.) 

 Now we’ll apply the rules of probability governing and and or to the dice 
situation.  Let’s start with the probability that you roll a 6 and a 7 (on one roll of two 
dice).  Obviously that’s impossible – two numbers can’t simultaneously add up to 6 and 
to 7.  So P(6 and 7) = 0.  How about the probability of rolling a 6 or a 7?  Let’s use the 
formula, calling rolling a 6 event A and rolling a 7 event B:   

 P(A or B) = P(A) + P(B) – P(A and B): 

  P(6 or 7) = P(6)  + P(7)  –  P(6 and 7)   =   

           
36
110

36
6

36
5

=−+ . 

A simpler method is just to count how many outcomes have sums of 6 or sums of 7: 

 
  Die #2 
  1 2 3 4 5 6 
 1 1,1 1,2 1,3 1,4 1,5 1,6 
 2 2,1 2,2 2,3 2,4 2,5 2,6 
Die 
#1 

3 3,1 3,2 3,3 3,4 3,5 3,6 
4 4,1 4,2 4,3 4,4 4,5 4,6 

 5 5,1 5,2 5,3 5,4 5,5 5,6 
 6 6,1 6,2 6,3 6,4 6,5 6,6 

What’s the probability that you’ll roll at least an 8?  Well, that would mean rolling 
an 8 or 9 or 10 or 11 or 12.  I’ve put those outcomes in bold type: 

 
  Die #2 
  1 2 3 4 5 6 
 1 1,1 1,2 1,3 1,4 1,5 1,6 
 2 2,1 2,2 2,3 2,4 2,5 2,6 
Die 
#1 

3 3,1 3,2 3,3 3,4 3,5 3,6 
4 4,1 4,2 4,3 4,4 4,5 4,6 

 5 5,1 5,2 5,3 5,4 5,5 5,6 
 6 6,1 6,2 6,3 6,4 6,5 6,6 

There are 15 of them, so P(At least 8) = 
36
15 . 
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 What’s the probability of at most a 4?  That would be a 2, 3, or 4: 

 
  Die #2 
  1 2 3 4 5 6 
 1 1,1 1,2 1,3 1,4 1,5 1,6 
 2 2,1 2,2 2,3 2,4 2,5 2,6 

Die #1 3 3,1 3,2 3,3 3,4 3,5 3,6 
4 4,1 4,2 4,3 4,4 4,5 4,6 

 5 5,1 5,2 5,3 5,4 5,5 5,6 
 6 6,1 6,2 6,3 6,4 6,5 6,6 

 

P(At most 4) = 
36
6 .   

 At least and at most are quantitative phrases that can give people a lot of trouble, 
so make sure this doesn’t happen to you.  Think of practical situations:  You must be at 
least 21 to buy alcohol or cannabis; you must be at most 5 feet tall to go on this ride. 

 

Now let’s talk about a different kind of use of the outcomes of the dice rolls.  
Instead of caring about the sum of the dice, we’re going to care about how the first die or 
the second die landed.  What’s the probability that the first die lands on 3?   

 
  Die #2 
  1 2 3 4 5 6 
 1 1,1 1,2 1,3 1,4 1,5 1,6 
 2 2,1 2,2 2,3 2,4 2,5 2,6 

Die #1 3 3,1 3,2 3,3 3,4 3,5 3,6 
4 4,1 4,2 4,3 4,4 4,5 4,6 

 5 5,1 5,2 5,3 5,4 5,5 5,6 
 6 6,1 6,2 6,3 6,4 6,5 6,6 

P(3 on 1st die) = 
6
1

36
6
= , which is just what you’d expect.   

What’s the probability that the second die lands on 4? 

 

 
  Die #2 
  1 2 3 4 5 6 



70 

 1 1,1 1,2 1,3 1,4 1,5 1,6 
 2 2,1 2,2 2,3 2,4 2,5 2,6 

Die #1 3 3,1 3,2 3,3 3,4 3,5 3,6 
4 4,1 4,2 4,3 4,4 4,5 4,6 

 5 5,1 5,2 5,3 5,4 5,5 5,6 
 6 6,1 6,2 6,3 6,4 6,5 6,6 

P(4 on 2nd die) = 
6
1

36
6
= , which is also just what you’d expect.   

 What’s the probability that the first die lands on 3 and the second die lands on 4? 

 
  Die #2 
  1 2 3 4 5 6 
 1 1,1 1,2 1,3 1,4 1,5 1,6 
 2 2,1 2,2 2,3 2,4 2,5 2,6 

Die #1 3 3,1 3,2 3,3 3,4 3,5 3,6 
4 4,1 4,2 4,3 4,4 4,5 4,6 

 5 5,1 5,2 5,3 5,4 5,5 5,6 
 6 6,1 6,2 6,3 6,4 6,5 6,6 

P(3 on 1st die and 4 on 2nd die) = 
36
1 .  (Notice that this tells us that the outcome of the 

first die and the outcome of the second die are independent events, because  

P(3 on 1st die and 4 on 2nd die) = 
6
1

6
1

36
1

×= = P(3 on 1st die) x P(4 on 2nd die).) 

 Now let’s find the probability that the first die lands on 3 or the second die lands 
on 4.  First we’ll do it directly by counting the outcomes that satisfy the condition: 

 
  Die #2 
  1 2 3 4 5 6 
 1 1,1 1,2 1,3 1,4 1,5 1,6 
 2 2,1 2,2 2,3 2,4 2,5 2,6 

Die #1 3 3,1 3,2 3,3 3,4 3,5 3,6 
4 4,1 4,2 4,3 4,4 4,5 4,6 

 5 5,1 5,2 5,3 5,4 5,5 5,6 
 6 6,1 6,2 6,3 6,4 6,5 6,6 

Notice that there are only 11 of them.  Don’t count the 3,4 twice.  Yes, it gets in on both 
parts of the or, but it’s only one outcome!  So P(3 on 1st die or 4 on 2nd die) = 

36
11 .  And 

this agrees completely with our formula: 
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 P(3 on 1st die or 4 on 2nd die) =  

P(3 on 1st die) + P(4 on 2nd die) – P(3 on 1st die and 4 on 2nd die) = 

        
36
6          +         

36
1

36
6

−                     =     
36
11 .
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Activity #8:  Rules of probability 

 
Use the sex/attitude-toward-social-media contingency table to find the probabilities: 
 
  Attitude toward Social Media 
  Negative Neutral Positive 

Sex Male    
Female    

 
1)  P(Female and Negative) 
 
2)  P(Female or Negative) 
 
3)  P(Neutral given Male) 
 
4)  P(Male given Neutral) 
 
 
Use the two-dice chart to find the probabilities: 
 
  Die #2 
  1 2 3 4 5 6 
 1 1,1 1,2 1,3 1,4 1,5 1,6 
 2 2,1 2,2 2,3 2,4 2,5 2,6 

Die #1 3 3,1 3,2 3,3 3,4 3,5 3,6 
4 4,1 4,2 4,3 4,4 4,5 4,6 

 5 5,1 5,2 5,3 5,4 5,5 5,6 
 6 6,1 6,2 6,3 6,4 6,5 6,6 

 
5)  P(Odd on 1st die and Even on 2nd die) 
 
6)  P(Odd on 1st die or Even on 2nd die)
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Worksheet #12: Empirical Probability  
Use this contingency table to find the probabilities. 

  
Favorite Color 

 
 Primary Secondary Neither 

Gender 
Male 29 21 14 

Female 16 25 38 
 
If one person is selected randomly from the survey group, find the probability that 
the person: 

1) Is male. 

2) Is female. 

3) Chose a primary color. 

4) Chose a secondary color. 

5) Chose a color which is neither primary nor secondary. 

6) Chose a primary or a secondary color. 

7) Is male and chose a secondary color. 

8) Is male or chose a secondary color. 

9) Chose a primary color and is female. 

10) Chose a primary color or is female. 

11) Is male and chose a color which is neither primary nor secondary. 

12) Is male or chose a color which is neither primary nor secondary. 

13) Is male given that the person chose a primary color. 

14) Chose a primary color given that the person is male. 

15) Chose a secondary color given that the person is female. 

16) Is female given that the person chose a secondary color. 

17) Is male given that the person chose a secondary color. 

18) Chose a secondary color given that the person is male. 
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Worksheet #13: Classical Probability  

 
Die #2 

Die #1 

1, 1 1, 2 1, 3 1, 4 
2, 1 2, 2 2, 3 2, 4 
3, 1 3, 2 3, 3 3, 4 
4, 1 4, 2 4, 3 4, 4 

 
Using these four-sided dice, find the probability that 
 

1) their sum is 5 
    

2)  their sum is not 5 
 

3) their sum is an even number 
 

4) they are both even numbers 
 

5) one is even and one is odd 
 

6) die #1 has a smaller number than die #2 
 

7) their product is a perfect square 
 

8) their sum is at least 5 
 

9) their sum is at most 6 
 

10) the first is 2 and the second is 3 
 

11) the first is 2 or the second is 3 
 

12) the first is even and the second is odd 
 

13) the first is even or the second is odd 
 

14) the absolute value of their difference is 1 
 

15) their product exceeds 5 
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Lecture #9:  Counting Rules and Probability  
 
 You probably think you already know how to count, and of course you do in the 
usual sense of the word, but when we talk about counting in the context of probability 
and statistics we mean something quite specific and quite different, as you will see.  
There are three rules of counting.  They are related to each other and flow from each 
other.  We’ll develop these rules first and then relate them to probability.   
 
The Multiplication Rule of Counting 
 

The first is the multiplication rule of counting.  It applies when you’re doing 
things in a certain order and at each stage you know how many possible actions you can 
take.   

 
Say you’re going out to dinner, and the menu contains two different soups, tomato 

and minestrone, three entrées (main courses), which are chicken, salmon, and pasta, and 
finally two different desserts, flan and jello.  How many different meals can you order, if 
being different means that at least one of the choices differs from another meal? 

 
One way (a very cumbersome one) to figure this out is to make a tree diagram.  

First you pick the soup (we’ll use initials for all the choices): 

 
Then you pick the entrée.  For each choice of soup, there are three choices of entrée: 
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Finally, you choose the dessert, and for each two choices so far, either flan or jello can be 
chosen: 

 
 This looks kind of like a tree, if you tilt your head to the right.  Each possible path 
from left to right gives a different meal.  For instance, the thick line means you chose 
minestrone, chicken, and jello. 
 
 To find out the total number of meals, you have only to count the number of 
letters in the dessert column, because each one can be traced backwards, through the 
entrée and ending at the soup, to produce a unique meal.  As you can see, there are 12 of 
these, so there are 12 possible meals.   
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 This is obviously a very cumbersome method, and the multiplication rule of 
counting gives a shortcut:  just take the number of choices at each stage of the meal, and 
then multiply these numbers together:  12232 =×× .  Note that since multiplication is 
commutative, it wouldn’t matter if you actually chose the entrée, then the dessert, and 
then the soup.  You’d still have 12223 =××  possible meals.   
 
 How many different meals can be ordered if there are four soups, five entrees, and 
three desserts available?  60354 =××  meals. 
 

This rule can be applied to various other real-life situations like figuring out how 
many license plate numbers are available in a certain format (the current California 
format is a digit, then three letters, then three more digits, for a total of 

000,760,17510101026262610 =××××××  possible license plates, minus a few because 
of unacceptable three-letter words – you can supply them), and in figuring out how many 
phone numbers are available in each area code (it would be 710  except not all digits can 
be used in certain positions).  What happens when an area code runs out of phone 
numbers?  Ten million might seem like a lot of phone numbers, but not when there are 
fax machines, pagers, cell phones, land lines, etc. being used all over.  There are two 
alternatives.  One is to split the area into two new areas, which means that many existing 
phones numbers have to change area codes, and this creates extra expenses for both the 
businesses and the residents that have to change.  The other is the overlay, in which 
everybody keeps their area code, but new numbers in the area get a different area code, 
which means you might have to put in 10 digits to call your next-door neighbor. 

 
Here’s an example that we’ll follow and modify all the way through the three 

counting rules.  Say you’re taking the letters A, B, C, and D and making two-letter 
“words” from them (in quotes because they don’t really have to be words, just sequences 
of letters).  Here’s the sample space: 

 
AA AB AC AD 
BA BB BC BD 
CA CB CC CD 
DA DB DC DD 

 
It’s got 16 outcomes.  But we could have figured this out without writing them all out by 
noticing that there are four choices for the first letter and four choices for the second 
letter, and because each choice for the first letter can be paired with each of the four 
choices for the second letter to make the word, there are 1644 =×  such words.  So the 
multiplication rule of counting, as the name implies, tells us to take the number of 
possibilities at each stage of our process, whatever it is, and multiply them to find the 
total number of possibilities.   
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 The rule also explains the size of the sample spaces for our coin flips.  There are 
two possible ways each coin flip can turn out.  So for two coins we get 422 =×  possible 
outcomes, for three coins 8222 =×× , for seven coins 2 × 2 × 2 × 2 × 2 × 2 × 2 =
27 = 128, and for n coins n2 . 
 
Permutations 
 
 The next counting rule involves what are called permutations, and it’s best 
explained by going back to our example with the four letters and the two-letter “words.”  
What if, after we pick a letter to start the word, we can no longer use that letter again in 
that particular word?  Now the sample space would be  
 

AB AC AD 
BA BC BD 
CA CB CD 
DA DB DC 

 
The words with a double letter, like AA, would be eliminated.  We call this without 
repetition. 
 
 Note that ( )Sn  is 12 in this situation, and we could have found it by using the 
multiplication rule of counting, because there are still 4 choices for the first letter, but 
once it has been picked there are only 3 choices left, regardless of which letter we chose 
to begin the word, and 1234 =× .  But we have another term and notation for this 
situation, namely the number of permutations of 4 items taken 2 at a time, or 4 P 2.  In 
general, if you have n choices and want to make a string using r of them, and you can’t 
use them more than once in each string, and you want to know how many such strings are 
possible, you’re talking about the number of permutations of n items taken r at a 

time, or rn P .   
 
 Permutations are a kind of special case of the multiplication rule of counting, in 
which at each stage of choosing we’re selecting from the same pool we started with, but 
we can’t pick any item twice.  What if you had nine paintings and wanted to put four of 
them on your wall, and it really matters to you which position the four occupy?  You’d 
have nine choices for the left-most one, eight for the next, seven for the third, and six for 
the right-most.  Five paintings would be left out entirely.  We call the number of 

possibilities the number of permutations of 9 items taken 4 at a time, or 49 P .  Even 
though it’s not too hard just to multiply out 6789 ××× and get 3024, if the n and r get 
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much bigger it’s hard to keep track and know when to stop counting down, so we can just 

let the calculator, which has the rn P  function on it, do the work for us.   
 
 What if we had room for all nine paintings, but we still care about their exact 
arrangement on the wall?  Then we’d have 880,362123456789 =××××××××  
possible arrangements!  By the time we got to the last painting we’d have no choice, 
because we’d already used the other eight.  That’s the meaning of the 1.  We could 

symbolize this as 99 P , but it is such a common and useful mathematical idea that we 
have another name and notation for it, namely 9 factorial, or simply 9!.  The exclamation 
point tells you to start with the integer to its left and keep reducing it by 1 until you get to 
1 and take all the numbers and multiply them together.  
 
 Permutations come into play in problems where things have to be put into a 
certain order.  How many 9-hitter batting orders can be made from a 25-person team?  (A 

player can’t appear more than once in the batting order.) 925 P , or almost 
750,000,000,000.  How many slates of officers (president, vice-president, treasurer, 
secretary) can be chosen from a committee containing twenty people?  (A committee 

member can’t hold more than one office.) 280,116420 =P . 
 
Combinations 
 
 But what if you don’t care who runs for president as opposed to vice-president, 

etc.?  You simply want to pick a four-person subcommittee.  Well, 280,116420 =P  
overcounts by a lot, because each four-person subcommittee has been included in the 
116,280 as many times as those four people can be arranged in an order, as president, 
vice-president, etc.  We call this situation a combination as opposed to a permutation, 
the difference being that in a permutation the order of the choices matters, but in a 
combination it doesn’t, because you’re just picking a group.   
 

Our notation for this is rn C , or the number of combinations of n items taken r 

at a time, In the case of the four-person subcommittee, we’d write 420 C , which comes out 
to 4845 on the calculator, and it would be called the number of combinations of 20 
items taken 4 at a time.   

 
 Going back to our original situation with the four letters, a combination problem 
would be to ask how many groups of two letters could be formed from A, B, C, and D.  
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Of course this is a without-repetition situation, but it also doesn’t matter which letter is 
chosen first.  These are the possible groups 
 

A,B A,C A,D 
B,C B,D C,D 

 
We would write this as 4 C 2, and it indeed equals 6.   
 

For the baseball problem, we could ask how many different squads of nine players 
could be selected to take the field out of a team with 25 players.  The answer would be 

975,042,2925 =C .  Still quite a few possibilities!  Luckily for the manager, not every 
group of nine has to be considered, because players play only certain positions. 

 
Sometimes it’s hard to tell if a situation is a permutation or a combination.  You 

have to ask yourself:  is the order of choosing important or not?  If it is, you have a 
permutation; if it isn’t, it’s a combination.  But sometimes it’s hard to tell if the order of 
choosing is important or not, and then you’d need more information to decide. 

 
Let’s say you’re ordering a two-scoop ice cream cone, and you’ve got nineteen 

flavors to choose from.  Well, maybe it matters to you which flavor is on the bottom and 
which one is on top.  Maybe the chocolate needs to be on the bottom because you want to 
save it for last.   In this case the situation would be a permutation; otherwise it would be a 
combination.  And this doesn’t even address the additional possibility that you want both 
scoops to be the same flavor, which would add another nineteen possibilities to the total. 

 
And how about pizza?  If you can choose three toppings from twelve, does it 

matter to you which one goes on first?  Probably not, but it’s something to consider. 
 

Using More than One Rule in a Situation 
 
 Sometimes a counting situation requires you to use two or three of the rules of 
counting.  Let’s expand the example of the four-person subcommittee of the committee of 

twenty.  There were 420 C , or 4845, such subcommittees.  But now let’s say you’re 
making a larger group, consisting of four people from the twenty-person committee and 

two more chosen from a committee of five.  There are 1025 =C  ways to pick the two new 
members of the enlarged group.  Now we use the multiplication rule of counting to find 
the total number of ways the new group of six can be formed.  First we chose the four out 
of twenty and then the two out of five (or we could do it in reverse order), and then 
multiply the number of choices for the two selections.  Here’s a little diagram: 
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So the answer is that there are 20 C 4 

x 
5 C 2 = 4845 ∙ 10 = 48,450  ways to select the group 

of six. 
 
Using Counting Rules to Find Probabilities 
 
 Here’s an example of using the counting rules in probability to lend support to an 
accusation of discriminatory practices.  Let’s go back to the committee with 20 members, 
from which we want to select a four-person subcommittee.  Add in the fact that 10 of the 
members are from an underserved minority and 10 aren’t.  It turns out the subcommittee 
contains not a single person from the minority.  Is this discrimination? 
 

The way to find out is to begin by calculating the probability that such a 
subcommittee would contain no minority members.  Remember, if each person on the 
committee were equally likely to be selected, i.e. if there were no discrimination and thus 

the assumptions of classical probability were valid, ( ) ( )
( )Sn
EnEP = .  In this case S is the 

sample space consisting of all possible four-person subcommittees of a 20-person 

committee, so ( ) 420 CSn = .  E is the event consisting of all possible four-person 
subcommittees made up exclusively of non-minority members, of whom there are 10, so 

( ) 410 CEn = .  So ( ) 043.0
4845
210

420

010410 ≈=
⋅

=
C

CCEP .  In other words, such an unbalanced 

subcommittee would occur just over 4 times out of a 100 simply by chance, even if no 
discrimination existed.  (10 C 0 means picking nobody from the minority group, and it 
equals 1 because there’s only one way to do it.) 

 
Is this unlikely enough for someone to decide that there was discrimination?  It’s 

a judgment call.  But what if the subcommittee were to have six members, and it turned 
out that none were from the minority group?  In that case, 

( ) 005.0
760,38

210
620

010610 ≈=
⋅

=
C

CCEP , a small enough probability to make me think that 

the determination of discrimination is no longer a judgment call.  I mean, once out of 200 



82 

times you would get such a make-up of the subcommittee by chance if there were no 
discrimination – give me a break! 

 
Did you notice that the numerators in the two cases above were the same, 210?  

That’s because if you pick 4 people out of 10, you leave out 6, and vice versa.  In general, 

rnnrn CC −= , and in particular 610410 CC = .   
 
Let’s end with a more complicated example.  What if the subcommittee had some 

members of each group?  Let’s expand the subcommittee to seven members and calculate 
the probability that only one of them is a member of the minority group.  This means that 
the other six of them aren’t.  First, how many such seven-member subcommittees are 
possible?  Well, you’d have to pick six from the ten who aren’t in the minority group.  

We already know that this is 210610 =C .  Then we’d have to pick one from the ten in the 

minority group:  10110 =C .  (Of course this equals ten, because there are ten different 
individuals who could be selected.)  Now we use the multiplication rule of counting to 
figure out the total number of these groups consisting of six not in the minority group and 
one who is: 10 C 6 

x
 10C 1= 210 ∙ 10 = 2,100. The diagram illustrates this process: 

 
 The probability of picking such a group at random (without discrimination) is 

( ) 027.0
520,77

2100

720

110610 ≈=
⋅

=
C

CC
EP , or just under three chances out of a hundred.  Is 

this a small enough chance to support the claim of discrimination?  Again, this is a 
judgment call.  It’s not as small as 0.005, but it is smaller than 0.043, the number in our 
previous judgment call.  Alas, there is seldom a definitive answer to such a question in 
statistics.  
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Activity #9:  Rules of counting 

1. In how many ways can 7 different DVDs be arranged on a shelf? 

 
2. How many different 4-digit identification tags can be made if the digits can be 

used more than once?  If the first digit must be a 3 and repetitions are not 
allowed? 

 
3. How many ways can 3 cards be selected from a standard deck of 52 cards, if it 

doesn’t matter which one is picked first, second, etc.? 

 
4. How many ways can 5 tickets be selected from 50 tickets if each ticket wins a 

different prize and no ticket can win more than one prize? 

 
5. How many different tests can be made from a test bank of 18 questions if the test 

consists of 6 questions?  The order of the questions doesn’t matter. 

 
6. How many ways can 4 girls and 3 boys be selected from 12 girls and 9 boys?   

 
7. If a committee has 8 women and 6 men, what is the probability to the nearest 

thousandth that a subcommittee of 5 people will contain  

a) All men?   

b) 1 woman and 4 men? 

c)  2 women and 3 men?  
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Worksheet #15: Counting Rules and Probability  
 

1) In how many ways can 9 different books be arranged on a shelf? 
 
2) How many different 3-digit identification tags can be made if the digits can be 

used more than once? If the first digit must be a 5 and repetitions are not 
allowed? 

 
3) How many ways can 6 cards be selected from a special deck of 32 cards, if it 

doesn’t matter which is picked first, second, etc.? 

 
4) How many ways can 4 tickets be selected from 30 tickets if each ticket wins a 

different prize and no ticket can win more than one prize? 

 
5) How many different tests can be made from a test bank of 24 questions if the 

test consists of 10 questions? The order of the questions doesn’t matter. 

 
6) How many ways can 5 girls and 4 boys be selected from 14 girls and 10 boys? 

 
7) How many ways can 3 girls and 6 boys be selected from 11 girls and 12 boys? 

 
8) If a committee has 7 women and 9 men, what is the probability to the nearest 

thousandth that a subcommittee of 4 people will contain 

a) All men? 

b) 1 woman and 3 men? 

c) 2 women and 2 men? 

d) 3 women and 1 man? 

e) All women? 

 
9)  If a committee has 12 women and 12 men, what is the probability to the 

nearest thousandth that a subcommittee of 3 people will contain 

a) All men? 

b) 2 men and 1 woman? 

c) 1 man and 2 women? 

d) All women? 
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Lecture #10:  Discrete Probability Distributions 
 
 Some of this lecture should be very familiar to you, just old topics with new 
words attached to them.  Other parts will expand the concepts we’ve been developing. 
 
 The first concept is the random variable.  This just means assigning a number to 
each outcome of a probability experiment.  We’ve already done this for rolling two dice:  
the sum of the upward-facing pips is the random variable.  Flipping four coins:  the 
number of heads is the random variable.   
 
 But there are two kinds of random variables, discrete and continuous.  We used 
these words in the very first lecture in the course.  Discrete random variables take on 
counting numbers as values:  0, 1, 2, and so on.  Maybe there’s a definite stopping place, 
like 12 for rolling two dice, or 4 for the number of heads in flipping four coins, but 
sometimes there isn’t, or we don’t know what it is.  For instance, if the random variable is 
the number of phone calls a business receives in a given hour of the day, we don’t know 
the highest possible value of the random variable, but we know the value will be 0, 1, 2, 
or a larger whole number. 
 
 Today we’re going to talk only about discrete random variables and their 
probability distributions.  We’ll take on the continuous ones, like giving the height of a 
person when the probability experiment is to measure him or her, next time. 
 
A Probability Distribution from Classical Probability 
 
 What if you’re going to have four children, and each one will be either a boy or a 
girl, and the likelihood of either sex is the same for each birth?  We can say that the sex 
of each child is independent of the sex of the others.  This is the same as flipping four fair 
coins.  (Some people don’t believe any of this.  They think that some people are more 
likely to produce boys than girls, or vice versa, or that once having produced a child of 
one sex you go on producing this sex.  I’m not disputing these beliefs, but to have an 
example from classical probability we can’t employ them.)  Here’s the sample space, 
using F for a girl and M for a boy, and listing the sexes in the order of birth: 
 

FFFF 
 
FFFM 
FFMF 
FMFF 
MFFF 
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FFMM 
FMFM 
FMMF 
MFFM 
MFMF 
MMFF 
 
FMMM 
MFMM 
MMFM 
MMMF 
 
MMMM 

 
The size of the sample space (n(S)) is 16, as you know from the multiplication rule of 
counting:  1622222 4 ==××× .  I’ve put boxes around the outcomes which result in the 
same number of boys, which is what we’re going to use for the random variable, which 
we will call X.  As you can see, there is one outcome resulting in 0 boys, four resulting in 
1 boy, six resulting in 2 boys, four resulting in 3 boys, and one resulting in 4 boys.   
 
 Using the assumption of classical probability, that any outcome is as likely to 

occur as any other outcome, we can use the formula 
( )
( )Sn
EnEP =)( , where the event E is 

that you have X boys, to determine the probability that you have 0, 1, 2, 3, or 4 boys.  We 
put this information into a table which is called a probability distribution: 
 

X P(X) 
0 1/16 or 0.0625 
1 4/16 or 0.25 
2 6/16 or 0.375 
3 4/16 or 0.25 
4 1/16 or 0.0625 

 
The left-hand column lists all possible values of the random variable X, and the right-
hand column lists the probability that the value X will occur.  So P(0) = 0.0625, P(1) = 
0.25, etc.  The P(X)’s have to add up to one, since one of the values of X has to occur 
each time the experiment (in this case, having four children) is performed. 
 
 As with any data set, we want to know two things:  a measure of central tendency 
and a measure of variation.  In a probability distribution, this will be the population mean, 
µ , and the population standard deviation, σ.  Note that these are parameters, numbers 
describing a population, because the probability distribution describes the total behavior 
of the random variable, not just a sample of it. 
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 Here’s how you find µ:  first you multiply each value of the random variable by 
its associated probability.  Since 00625.00 =⋅ , you get 0 for the first entry.  The second 
is 25.025.01 =⋅ , and so on.  Here’s the completed column added on: 
 

X P(X) X.P(X) 
0 1/16 or 0.0625 0 
1 4/16 or 0.25 0.25 
2 6/16 or 0.375 0.75 
3 4/16 or 0.25 0.75 
4 1/16 or 0.0625 0.25 

 
 
Now you add up the last column, whose sum can be expressed as ∑[𝑋𝑋 ∙ 𝑃𝑃(𝑋𝑋)], using our 
symbol for the sum.  As you can see, ∑[𝑋𝑋 ∙ 𝑃𝑃(𝑋𝑋)] = 2, and this is µ , the population 
mean.  So the formula for the population mean is 𝜇𝜇 = ∑[𝑋𝑋 ∙ 𝑃𝑃(𝑋𝑋)], and it is our measure 
of central tendency. 
 
 Another name for this µ  is the expected value, because it’s the value of the 
random variable which you would most expect to find.  In the case of having four 
children, you would expect on average that half, or 2, would be boys.  But it’s neat to see 
that it works out this way also by adding up the 𝑋𝑋 ∙ 𝑃𝑃(𝑋𝑋) values.  It works here because 
the probabilities are symmetrical around P(2) – in other words P(0) = P(4) and P(1) = 
P(3).   
 

In general expected value is just a synonym for the mean, but it’s a useful concept 
for answering questions like how many boys one would expect to find in 20 families with 
four children.  Since you expect 2 per family, the answer is 40220 =⋅ .  (Of course, in 
this particular situation you could simply reason that since the 20 families have a total of 
80 offspring, and boys and girls are equally likely to occur, you’d expect half of the 80, 
or 40, to be boys.) 

 
 How about σ?  This is a somewhat more complicated calculation, but you’ll get 
plenty of practice, and you can check your work on the calculator.  First, you find 𝑋𝑋 − 𝜇𝜇, 
the deviation from the mean, for each value of X.  For 0, this would be 220 −=− , for 1 it 
would be 121 −=− , and so on: 
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X P(X) X.P(X) X - μ 
0 1/16 or 0.0625 0 -2 
1 4/16 or 0.25 0.25 -1 
2 6/16 or 0.375 0.75 0 
3 4/16 or 0.25 0.75 1 
4 1/16 or 0.0625 0.25 2 
  μ =Σ(X.P(X)) =2  

 
 This is somewhat reminiscent of how we found the standard deviation of a data set using 
the table method, and so is the next step, in which we square the µ−X ’s, remembering 
that squares are never negative: 
 

X P(X) X.P(X) X - μ (X - μ)2 
0 1/16 or 0.0625 0 -2 4 
1 4/16 or 0.25 0.25 -1 1 
2 6/16 or 0.375 0.75 0 0 
3 4/16 or 0.25 0.75 1 1 
4 1/16 or 0.0625 0.25 2 4 
  μ =Σ(X.P(X)) =2   

 
But the similarity stops here, because now we have to take into account the different 
probabilities, or weights, of the different values of X.  What we do is multiply the 

( )2µ−X ’s by the probability of the X’s that produced them.  The first one is 
25.040625.0 =⋅ , the next 25.0125.0 =⋅ , and so on (be careful to multiply by P(X) and 

not X.P(X)): 
 

X P(X) X.P(X) X - μ (X - μ)2 (X - μ)2.P(X) 
0 1/16 or 0.0625 0 -2 4 0.25 
1 4/16 or 0.25 0.25 -1 1 0.25 
2 6/16 or 0.375 0.75 0 0 0 
3 4/16 or 0.25 0.75 1 1 0.25 
4 1/16 or 0.0625 0.25 2 4 0.25 
  μ =Σ(X.P(X)) =2    

 
Isn’t it interesting that the last column consists entirely of 0.25’s, except for the 0? 
 
 Anyway, finally we’ve finished the table, and now we do something that is again 
reminiscent of the table method for finding the standard deviation of a data set:  add up 
the last column:  ∑[(𝑋𝑋 − 𝜇𝜇)2 ∙ 𝑃𝑃(𝑋𝑋)] = 1.  However, we don’t divide by n -1 or by N – 
this is the population variance, 2σ  (remember that in the corresponding process for data 
sets, first we got 𝑠𝑠2, the sample variance).   
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 So the formula is 𝜎𝜎2 = ∑[(𝑋𝑋 − 𝜇𝜇)2 ∙ 𝑃𝑃(𝑋𝑋)], and from this we get the formula for 
the population standard deviation, σ: 𝜎𝜎 = �∑[(𝑋𝑋 − 𝜇𝜇)2 ∙ 𝑃𝑃(𝑋𝑋)].  So in the case of the 
four children, 𝜎𝜎 = √1 = 1, or 1.0, since we would round to the nearest tenth if the 
number didn’t terminate by then, and it most likely won’t, because it’s a square root.  
This was a special case – not only is the standard deviation a rational (in fact, a whole) 
number, but it’s numerically equal to the variance. 
  
 
A Probability Distribution from Empirical Probability 
 
 In the example of the four-children families, we could figure out the probabilities 
for the different values of the random variable by looking at the sample space, because it 
was a classical probability situation.  Now let’s look at a random variable for which you 
have to be told the probabilities, because there’s no way you could deduce them on your 
own. 
 
 Here’s the (fictional) situation:  Every day I buy lottery tickets, but not always the 
same number of tickets.  I buy either one, or two, or three, or four tickets.  There’s no 
pattern or rotation to the number I buy on a given day, but over time I notice that I buy 
one ticket on half the days, two tickets on a fifth of the days, and three tickets also on a 
fifth of the days.   
 
 That’s the story.  The first task is to find the fraction of the days on which I buy 
four tickets, the only other possible number of tickets that I buy.  Remember that since I 
always buy at least one ticket, the fractions of days I buy the different numbers of tickets 
must add up to one.  To find the fraction remaining for buying four tickets, subtract the 
other fractions from 1:   

10
1

10
2

10
2

10
5

10
10

5
1

5
1

2
11

=−−−

=−−−
 

So I buy four tickets on a tenth of the days. 
 
 We can interpret these fractions as probabilities, since how likely it is on any 
given day that I buy a certain number of tickets has to be interpreted as the fraction of 
days on which I do buy that many.  Calling the number of tickets I buy on a given day the 
random variable X, we can make a probability distribution table for my ticket-buying 
activity: 
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X P(X) 
1 0.5 
2 0.2 
3 0.2 
4 0.1 

 
 Now we’re going to follow the same steps we did with the four-children family 
example and find the mean and standard deviation of the distribution.  First the mean: 
 

X P(X) X.P(X) 
1 0.5 0.5 
2 0.2 0.4 
3 0.2 0.6 
4 0.1 0.4 
 μ =Σ(X.P(X)) =1.9 

 
So on an average day I buy 1.9 lottery tickets.  Of course I can’t do that, but don’t round 
this number!  If you round it, your answers to questions about how many tickets I can 
expect to buy over a certain period of time will be inaccurate.  Take six weeks.  That’s 42 
days.  Since ( ) 8.799.142 = , on the average I buy just under 80 tickets in six weeks.  But 
if you round the mean of 1.9 to 2, you’d get ( ) 84242 =  tickets purchased, clearly an 
overstatement. 
 
 Here’s a note of explanation about the term expected value.  As stated before, 
expected value is just a synonym for mean, but consider this:  What if, in the course of a 
ten-day period, my ticket-buying behavior exactly conforms to the pattern I explained 
above?  Well, on half of those ten days, namely five, I’d buy one tickets, on a fifth, or 
two days, I’d buy two tickets, same for three tickets, and on a tenth, or one of the days, 
I’d buy four tickets.  Here’s a little table to show my ticket-buying behavior on the ten 
days: 
 

# of Days 
# of Tickets 

Bought per Day 
Total # 
Bought 

5 1 5 
2 2 4 
2 3 6 
1 4 4 
  19 

 
(The Total # Bought is found by multiplying the # of Days by the # of Tickets Bought per 
Day.) 
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 So I would have bought 19 tickets during those ten days, and since 9.1
10
19

= , I 

would expect to average 1.9 tickets bought per day.   
 
 Now on to the standard deviation, σ.  Here I show the completed table: 
 

X P(X) X.P(X) X - μ (X - μ)2 (X - μ)2.P(X) 
1 0.5 0.5 -0.9 0.81` 0.405 
2 0.2 0.4 0.1 0.01 0.002 
3 0.2 0.6 1.1 1.21 0.242 
4 0.1 0.4 2.1 4.41 0.441 
 μ = Σ X.P(X) =1.9    

 
(Let me point something out here.  Remember when we were finding the standard 
deviation of a data set, and when we got to the deviations from the mean column, xx − , 
you saw that these deviations had to add up to 0?  In fact this was a check to show you 
had the correct mean.  In the four-children example, the µ−x ’s also added up to 0, but 
that was because the probabilities are symmetrical.  In this lottery ticket example, the 

µ−x ’s clearly don’t add up to 0, nor should they, because the mean is heavily weighted 
in the direction of  X = 1, buying one ticket on a given day.) 
 
 Here are the calculations for the row X = 3, in case you’re having trouble seeing 
where the numbers come from: 3(0.2) = 0.6; 3 − 1.9 = 1.1; 1.12 = 1.21; 1.21(0.2) =
0.242. 
 

 The next step is to add the ( ) ( )XPX ⋅− 2µ ’s, and this gives us 𝜎𝜎2 =
∑[(𝑋𝑋 − 𝜇𝜇)2 ∙ 𝑃𝑃(𝑋𝑋)] = 1.090.  So the population standard deviation is 𝜎𝜎 =
�∑[(𝑋𝑋 − 𝜇𝜇)2 ∙ 𝑃𝑃(𝑋𝑋)] = √1.090 ≈ 1.0440, or, to the nearest tenth (since we have to 
round this time), 1.0.  (Remember to keep the 0 after the decimal point to show that you 
rounded to the nearest tenth, not to the nearest whole number.) 
 
 Finally, here’s a little critical-thinking exercise using the lottery ticket example.  
Remember the phrase “the interval of data within one standard deviation of the mean”?  
When we encountered it, we used the notation (�̅�𝑥 − 𝑠𝑠, �̅�𝑥 + 𝑠𝑠) to denote it.  Now, since 
we’re dealing with a population and parameters (a probability distribution always 
describes a complete population, not a sample), we’d call it (𝜇𝜇 − 𝜎𝜎, 𝜇𝜇 + 𝜎𝜎). 
 
 Here’s the question:  What is the probability that on any given day I buy a number 
of tickets within one standard deviation of the mean?   
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 There are three steps to do.  First find the interval (𝜇𝜇 − 𝜎𝜎, 𝜇𝜇 + 𝜎𝜎) for this 
example: 

(𝜇𝜇 − 𝜎𝜎, 𝜇𝜇 + 𝜎𝜎) = (1.9 − 1.0, 1.9 + 1.0) = (0.9, 2,9) 
 

Next, find the values of X that actually fall within this interval.  Well, 1 does, and 
so does 2, but when you get to 3 it’s too big, because 9.23 > .  So buying one ticket or 
buying two tickets are the only ways of buying a number of tickets within one standard 
deviation of the mean. 

Finally, find the probability of buying one or two tickets.  Since I can’t do both on 
one day (the two events are mutually exclusive), you find P(1 or 2) by adding P(1) and 
P(2). 

 
X P(X) 
1 0.5 
2 0.2 
3 0.2 
4 0.1 

 
And since 𝑃𝑃(1) + 𝑃𝑃(2) = 0.5 + 0.2 = 0.7, the answer to the question is that the 
probability that on any given day I buy a number of tickets within one standard deviation 
of the mean is 0.7, or 70%. 
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Activity #10:  An empirical discrete probability distribution 

Here’s a situation very similar to the lottery ticket example in the lecture, only this time I 
could also buy five tickets on one day, and the fractions of days are as follows:  a quarter 
of the days I buy one ticket; a fifth of the days I buy two tickets; a tenth of the days I buy 
three tickets, and a fifth of the days I buy four tickets. 
 
 

1) On what fraction of the days do I buy five tickets? 

 

 

2) Make a probability distribution for the random variable X, the number of lottery 
tickets that I buy on a given day. 

 

 

 

 

3) Find the mean of the distribution. 

 

 

 

4) Find the standard deviation of the distribution, to the nearest tenth. 

 

 

 

 

5) What is the probability that on any given day I buy a number of tickets within one 
standard deviation of the mean?  
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Worksheet #16: Empirical Discrete Probability Distribution  

Every day I buy either one, two, three, or four lottery tickets.  One fifth of the days I buy 
one ticket; one half of the days I buy two tickets; a quarter of the days I buy three tickets.  
 

1) On what fraction of the days do I buy four tickets? 

 

 

2) Make a probability distribution for the random variable X, the number of lottery 
tickets that I buy on a given day. 

 

 

 

 

3) Find the mean of the distribution. 

 

 

 

4) Find the standard deviation of the distribution, to the nearest tenth. 

 

 

 

 

5) What is the probability that on any given day I buy a number of tickets within one 
standard deviation of the mean?   
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Lecture #11:  Continuous Probability Distributions 
 
 You’ve seen now how to handle a discrete random variable, by listing all its 
values along with their probabilities.  But what if you’re dealing with a continuous 
random variable, like height or weight or duration – something measured – and you want 
to talk about the probability of the random variable taking on different values? 
 
 Clearly you can’t just list all the possible values.   You’d have to spend the rest of 
your life doing it, and even then you wouldn’t make a dent.  Say you were weighing 
something, and the random variable is the weight.  Even if you could give a probability 
for, say, 42.783 g and 42.784 g, you’d still have to list, for instance, 42.7835 g.  Between 
each two rational numbers there is another one, and so on and so on.  We say that these 
numbers are dense.  We simply can’t list them all. 
 
 So with continuous random variables a whole different approach to probability is 
used.  First, we don’t speak of the probability that the random variable takes on an 
individual value.  Instead we deal with the probability that the random variable falls 
within a certain range of values.  The probability that the variable takes on an 
individual value is 0.  Nothing weighs 42.783 g on the nose, but there may be a positive 
probability that whatever it is we’re weighing will weigh between 42.783 g and 42.784 g.   
 
 And how do we find these probabilities of ranges of values?   Not by adding up 
individual probabilities, as you can see, but by using a concept from calculus (don’t let 
that word scare you – you’ll find that it’s surprisingly easy to grasp):  We look at what’s 
called the area under the curve.   
 
Probability Density Functions 
 
 Let me explain this using a really simple example.  Let’s say that I arrive at work 
every morning between 7 a.m. and 9 a.m.  I never come before 7 or after 9.  It isn’t that I 
mostly arrive pretty near 8 a.m.  I am as likely to arrive at 7:19 as at 7:58 as at 8:13 as at 
8:45.  In mathematical terms, my arrival times are uniformly distributed from 7 a.m. to 
9 a.m.   
 
 What fraction of the mornings will I arrive between 7:30 and 8?  Another way to 
ask this question is:  What is the probability that on a given morning I will arrive between 

7:30 and 8?  The answer is 
4
1  or 0.25 or 25%.  This is because since I arrive 100% of the 

days between 7 a.m. and 9 a.m., and because I’m equally likely to arrive at any time 
between 7 and 9, and because the half hour from 7:30 to 8 is one-fourth of this two-hour 
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interval, the probability that I’ll arrive between 7:30 and 8 is one-fourth of 100%, or 25%.  
I hope that seems obvious. 
 
 But here’s how we’d do this using the probability distribution of a continuous 
random variable.  Look at this graph: 

 
The t-axis represents my time of arrival at work.  The thick line, which we call a 
probability density function, represents the probability of my arriving at work.   The 
probability is 0 before 7 a.m. (the thick line coincides with the t-axis), shoots up to a 
certain level at 7 and maintains that level, and then drops back down to 0 at 9 a.m.  
 
 What is this certain level?  To find that, think back to discrete probability 
distributions.  There, the P(X)’s all had to add up to 1.  One of the X values was sure to 
occur.  It’s the same thing in the continuous case, only now we talk about the total area 
under the curve (and above the t-axis) equaling 1.  In fact, that’s part of the definition of 
a probability density function:  the total area under it must equal 1.  In our case the area is 
a rectangle bounded by the vertical lines at 7 and at 9, the t-axis, and our probability 
density function.  This area is 1.  The area of a rectangle is the product of its height and 

its width.  The width is 2 hours, from 7 to 9.  So the height must be 
2
1 , or 0.5, because 

12
2
1

=⋅ .   

 Now I’ll label the vertical axis with the 0.5 and shade in the area we’re interested 
in: 

 
In this system, the probability that I’ll arrive between 7:30 and 8 is equal to the shaded 

area.  It too is a rectangle, with width 
2
1  (the half hour from 7:30 to 8) and height 

2
1 , so 
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its area is %2525.0
4
1

2
1

2
1

===⋅ .   This is the same answer we got using common sense.  

I just wanted to illustrate the concept of the probability density function (pdf) and area 
under the curve, and especially to emphasize the defining characteristic of a pdf as having 
a total area underneath it (and above the horizontal axis) of 1. 
 
The Normal Distribution 
 

The most famous pdf is what we call the normal distribution.  You’ve probably 
heard it called the bell curve.  It is indeed bell-shaped.  It quite accurately describes an 
enormous range of real-life phenomena where the final value of the random variable 
depends on many, many very small occurrences which themselves are random.  If a 
random variable conforms to a normal distribution, we call it normally distributed.  
Heights of adult women in the U. S. are approximately normally distributed, as are the 
lengths of their feet and the circumferences of their heads.  Same for adult men.   

 
Think of those vending machines that dispense terrible coffee and are supposed to 

put 6 fluid ounces in a paper cup.  If you actually measured the volume of many of these 
filled cups, made a histogram of the volumes, and let your eyes get out of focus so you 
saw the tops of the bars as a curved line, that curve would be bell-shaped.  Most of the 
cups would have close to 6 fluid ounces in them; there would be the same number with a 
certain amount less as there are with that certain amount more (the histogram would be 
symmetrical), and as you got further and further away from 6 the bars would be shorter 
and shorter.   

 
Here’s a representation of this normal distribution: 

 
 

It’s symmetrical around 6, the mean of the distribution of X, the random variable that 
represents the number of fluid ounces deposited in a cup, and in theory the pdf never 
touches the x-axis (though of course you couldn’t have a negative number of fluid ounces 
in a cup, for instance), and because it’s a pdf the total area under the curve is 1.  So if you 
want to know what fraction of the cups have at least 6 fluid ounces of coffee, you 
represent the situation this way: 
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and the answer, of course, would be P(X > 6) = 0.5.  You’ll be delighted to learn that for 
the purposes of continuous random variables, it makes no difference whether we say 
“greater than” or “at least,” because there is zero probability associated with X=6.  
 
 If we wanted to know P(6.5 < X < 7), the probability that a cup has between 6.5 
and 7 fluid ounces, we would make this drawing: 

 
There are an infinite number of normal distributions.   The shape and location of their 
pdf’s depend entirely on the mean and the standard deviation of the distribution.  The 
mean determines the central point of the distribution.  Here are two normal pdf’s with 
different means but the same standard deviation: 

 
 
And here are two normal pdf’s with the same mean but different standard deviations: 
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The smaller the standard deviation (i.e. the less varied the values of the random variable), 
the pointier the pdf. 
 
 The mean is apparent from looking at a normal pdf – it’s the value of the random 
variable directly under the hump.  How about the standard deviation?  It’s more subtle, 
and you don’t have to worry about it, but if you want your drawing to be accurate, then at 
one standard deviation below the mean, σµ − , and at one standard deviation above the 
mean, σµ + , the pdf has what we call in calculus inflection points.   
 
 Inflection points are points where a curve changes what we call its concavity – 
roughly, it goes from being cupped upward to being cupped downward, or vice versa.  
Here’s an example with a sine curve, which changes it concavity an infinite number of 
times throughout its span.  I’ve marked the inflection points: 
 

 
Let me do the same with our original normal curve: 

 
σµ +   looks to be located approximately at 6.7 fluid ounces, which would mean that 

7.0=σ , which is larger than it should be (that machine needs servicing – it’s way out of 
whack!!). 
 (For those of you interested in the math behind this, here is the formula for a 
normal pdf: 

( )
σ
µ

πσ
2

2

2
1 −

−
=

x

ey  
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where µ  is the mean of the normal distribution and σ is its standard deviation.  It 
contains two of the most famous numbers in mathematics, π, which, as you remember, is 
the ratio between the circumference and diameter of all circles, and e, which you might 
remember from algebra as being the natural logarithmic base.) 
 
 The great thing about normal distributions is that we know exactly what fraction 
of the data falls within any interval, in particular within one standard deviation of the 
mean, 

 
within two standard deviations of the mean, 

 
and within three standard deviations of the mean, a whopping 99.7%. 
 
 We can also find the percent of data that lie in any interval at all.  We used to do 
this by means of what’s called the standard normal table, an ingenious but cumbersome 
chart that requires lots of preliminary calculations and lacks the level of accuracy we 
would like to achieve.  If you want to look at one, try this: 
http://www.sjsu.edu/faculty/gerstman/EpiInfo/z-table.htm 
 
 With graphing calculators and computer math packages we can do much better, 
much more easily.  I’ll do the following problems as they would be done on the TI-83 or 
TI-84.   
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Practice Problems:  Finding Probabilities for Normal Distributions 
 
 For all these problems, we’re going to assume that women’s heights are normally 
distributed with a mean of 65 inches and a standard deviation of 3 inches. 
 

1) What is the probability that a woman is between 64 inches and 69 inches tall 
(5’4” to 5’9”)?  Put another way, what fraction of women’s heights are in this 
range?  We would write this P(64 < X < 69). 
 

First, draw a horizontal axis and label it x, write the units (inches) below it, and 
draw a normal pdf above the axis.  Then mark and label 65 on the axis underneath 
the highest point of the pdf, mark and label 64 to the left of 65 and 69 to the right 
of 65, draw vertical lines from the 64 and the 69 to the curve and shade the part 
between them, above the x-axis, and under the curve: 

 
Using the normalcdf (not normalpdf) function, enter the number on the left where 
the shading begins, the number on the right where it ends, the mean of the 
distribution, and its standard deviation, all separated by commas,  
normalcdf (64, 69, 65, 3), and you will get 0.539347.  Round this to the nearest 
ten-thousandth (four places after the decimal point), or equivalently to the nearest 
hundredth of a percent, and you come up with the correct answer:  0.5393, or 
53.93%. (These instructions, and others in this text, are about the older operating 
system of the TI’s.  If you have a newer operating system, you’ll see that it 
prompts you for the numbers you need to input, so it’s easier than having to 
remember “left, right, mean, standard deviation.”) 
 
2) What is the probability that a woman is taller than 5 feet, 10 inches, or 70 

inches?  Put another way, what fraction of women are taller than 70 inches?  
This would be written as P(X > 70). 

 
Start the same way as in Problem 1, but you have to mark and label only one 
number besides the mean, the 70.  Then shade to the right of the 70, because 
that’s where the taller heights are: 
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The only complication using normalcdf is that there is no number on the right 
where the shading ends, so put in a big one, and if you’re not sure if it’s big 
enough put in a bigger one and see if it changes your answer, at least to the 
nearest ten-thousandth.  Normalcdf ( 70, 1000, 65, 3) 04779.0≈ , so the rounded 
answer is 0.0478, or 4.78%. 
 
3) What is the probability that a woman is shorter than 67 inches, or what 

fraction of women are shorter than 67 inches, written P(X < 67)? 
 
This time you shade to the left: 

 
And, since the shading goes all the way to the left, in theory anyway, there is no 
smallest shaded number, so just proceed the way you did in Problem 2, testing 
with a smaller number if you are not sure yours was small enough:  
Normalcdf (0, 67, 65, 3) 7475075.0≈ , making the answer 0.7475, or 74.75%.
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Practice Problems:  Finding Cut-offs for Normal Distributions 
 
 In the problems above, we found the probability that the random variable falls 
within a certain range.  Now we’re going to reverse the process.  We’ll start with the 
probability of a certain range, and then we’ll have to find the values of the random 
variable that determine that range.  I’ll call these values cut-offs. 
 
 In these three problems, we’ll use the same situation as above:  Women’s heights 
are normally distributed with a mean of 65 inches and a standard deviation of 3 inches. 
 

1) How short does a woman have to be to be in the shortest 10% of women?  If 
we call this cut-off c, this could be written as finding c such that P(X < c) = 0.10. 
We’ll do the same kind of diagram as before, but this time we’ll label the known 
probability, 10%, and we do this above the shaded area, definitely not on the x-
axis, because it’s an area, not a height.  The hardest part of the diagram is 
deciding which side of the mean to put the c on and which side of the c to shade.  
You really have to think about it.  In this case, since by definition 50% of women 
are shorter than the mean, the cut-off for 10% has to be less than the mean: 

 
Using the calculator, which will find a cut-off using the invNorm function, 
followed by the percent of data under the normal curve to the left of (always to 
the left of, no matter which side of c the shading is on) the cut-off, then the mean 
and standard deviation, separated by commas, we get invNorm (0.10, 65, 3)  

1553.61≈ , or, to the nearest tenth of an inch, 61.2 inches.  So about 10% of 
women are shorter than 61.2 inches.  You can check this using normalcdf, and 
you might as well use more of the cut-off than we rounded to, for greater 
assurance that your check shows you got the right answer.  You get normalcdf (0, 
61.1553, 65, 3), which come to 0.0999997, or 10%. 
 
2) How tall does a woman have to be to be in the tallest fourth of women?  (What 
is the cut-off for the tallest 25% of women?)  If we call this height c, we want to 
find the value of c such that P(X > c) = 0.25.  Here’s the diagram: 
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Even though we shaded the area to the right of the cut-off, because that’s where 
the tallest 25% of women are, when we use invNorm we must put in 0.75, which 
is 25.01− , because the calculator finds cut-offs for areas to the left only:  
invNorm (0.75, 65, 3) 02.67≈ , or 67.0 inches, to the nearest tenth.  Checking 
with normalcdf (67.02, 1000, 65, 3), we get about 0.25037, pretty close to 25%. 
 
3) What if we’re interested in finding cut-offs for a middle group of women’s 
heights, say the middle 40%?  Obviously, we’re looking for two numbers here, 
one on either side of the mean.  Call them 1c  and 2c : 

 
To use invNorm, we must find out how much area is under the curve to the left of 
𝑐𝑐1.  Well, if 100% of area is under the entire curve, then what’s left over after 
taking away the middle 40% is 60.040.01 =− , and since that 60% is split evenly 
between the two tails (the parts at the sides), that gives 30% for each tail.  So 𝑐𝑐1 is 
the number such that 𝑃𝑃(𝑋𝑋 < 𝑐𝑐1) = 0.30, and invNorm (0.30, 65, 3) 4268.63≈ , or 
63.4 inches.  How much area is there under the curve to the left of 𝑐𝑐2?  Either 
subtract the 30% to the right from 100%, or add up the 30% in the left tail and the 
40% in the middle, and you’ll get 70% either way.  So 𝑐𝑐2 is the number such that 
𝑃𝑃(𝑋𝑋 < 𝑐𝑐2) = 0.70, and invNorm (0.70, 65, 3) 5732.66≈ , or 66.6 inches.  So to 
the nearest inch, the middle 40% of heights go from 63.4 to 66.6 inches.  The 
check is normalcdf (63.4268, 66.5732, 65, 3) 39999968.0≈ , or 40%.
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Activity #11a:  Normal distribution problems 
 
For all these problems, assume that women’s heights are normally distributed with a 
mean of 65 inches and a standard deviation of 3 inches.  Include a diagram for each 
problem.  Round probabilities to the nearest ten-thousandth, or hundredth of a percent, 
and round cut-offs to the nearest tenth of an inch. 
 

1) What is the probability that a woman is between 60 inches and 63 inches tall?   

 

 

2) What is the probability that a woman is taller than 5 feet 4 inches, or 64 inches?  

 

 

3) What is the probability that a woman is shorter than 62 inches? 

 

 

4) How short does a woman have to be to be in the shortest 20% of women?   

 

 

5) How tall does a woman have to be to be in the tallest fifth of women?   

 

 

6) What are the cut-offs for the heights of the middle 50% of women?
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Activity #11b:  Normal distribution practice 

 
For these problems, assume that the lengths of human pregnancies are approximately 
normally distributed with mean 266 days and standard deviation 16 days.  Include a 
diagram for each problem.  Round probabilities to the nearest ten-thousandth, or 
hundredth of a percent, and round number of days to the nearest whole number. 
 
 

1) What fraction of pregnancies last less than 250 days? 
 
 
 
 
 
 
 
 
2) What fraction of pregnancies last between 240 and 280 days? 

 
 
 
 
 
 
 
 
 
3) Find the cut-off for the longest 30% of pregnancies. 

 
 
 
 
 
 
 
 

 
4)  Find the cut-offs for the middle 80% of lengths of pregnancies.
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Worksheet #17: Normal Distributions – 1  
 
Assume that the weights of cats are normally distributed, with a mean of 4.76 kg and a 
standard deviation of 1.23 kg. 
 
Include a diagram for each problem.  Round probabilities to the nearest ten-thousandth, 
or hundredth of a percent, and round the weights to the nearest hundredth of a kilogram. 
 
 

1) What is the probability that a randomly selected cat weighs between 5.25 kg and 
6.81 kg? 

 
 
 

2) What is the probability that a randomly selected cat weighs less than 7.17 kg? 

 
 
 

3) What is the probability that a randomly selected cat weighs more than 4.51 kg? 

 
 
 

4) How much can a cat weigh and still be among the lightest 60% of cats? 

 
 
 

5) How little can a cat weigh and still be among the heaviest 10% of cats? 

 
 
 

6) What are the cut-offs for the middle 30% of cats by weight? 
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Worksheet #18: Normal Distributions – 2 
 
Assume that the heights of 4-year-olds are normally distributed, with a mean of 102.7 cm 
and a standard deviation of 4.8 cm. 
 
 
Include a diagram for each problem.  Round probabilities to the nearest ten-thousandth, 
or hundredth of a percent, and round the heights to the nearest whole centimeter. 
 
 

1) What is the probability that a randomly selected 4-year-old is between 91.2 cm 
and 95.7 cm tall? 

 
 

2) What is the probability that a randomly selected 4-year-old is taller than 106.3 
cm? 

 
 

3) What is the probability that a randomly selected 4-year-old is shorter than 98.3 
cm? 

 
 
 

4) How tall does a 4-year-old have to be to be in the tallest fourth of 4-year-olds?   

 
 
 

5) How tall does a 4-year-old have to be to be shorter than 60% of 4-year-olds?   

 

 

6)  What are the cut-offs for the middle 80% of 4-year-olds by height? 
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Lecture #12:  The Central Limit Theorem 
 
 Now that you’ve learned how to determine probabilities and cut-offs for normal 
distributions, you might wonder how you can be (reasonably) sure that a distribution is 
normal.  After all, the normalcdf and invNorm functions are valid only for normal 
distributions.   
 
 There are various sophisticated techniques for making this determination, but 
your calculator has a relatively simple one called NormProbPlot.   
 
 But more importantly, there’s a way in which every distribution can be turned 
into a normal one, allowing us to find probabilities and cut-offs, and this way is part of 
what we call the Central Limit Theorem, a result from advanced calculus (don’t worry, 
though), which we will use throughout the inferential statistics part of this course. 
 
 What I want to do here is to give you a sense of it, and give you an important 
formula from it, and let it sit on the back burner until we begin to use it. 
 
 It’s based on the concept of a sampling distribution.  Think about women’s 
heights.  We take a woman’s height; maybe she’s shorter than average, maybe she’s 
average, maybe she’s taller.  We have assumed that these heights, taken as a population, 
are normally distributed with a certain mean (𝜇𝜇 = 65 inches) and a certain standard 
deviation (𝜎𝜎 = 3 inches).  We called the random variable for height X.  Instead of  𝜇𝜇 =
65 inches, we could write more precisely 𝜇𝜇𝑋𝑋 = 65 inches, and we could also write 𝜎𝜎𝑥𝑥 =
3 inches.   
 
 Now imagine that we form groups, or samples, of ten women, many, many such 
samples, the members of which are randomly selected from women as a whole, and for 
each sample we look at the sample mean and make a data set of those means rather than 
the individual heights.  This set of sample means is called a sampling distribution.  Now 
we might want to find the usual things about the set of means – a measure of central 
tendency and a measure of variation. 
 
 You can think of this measure of central tendency as the mean of the means, a 
kind of a second-level mean.  Does it make sense to you that this mean, which we would 
label 𝜇𝜇�̅�𝑥 instead of 𝜇𝜇𝑋𝑋, would have to be the same as 𝜇𝜇𝑋𝑋?  You’re taking the same 
population, taking samples from it, and looking at their means – how could this set of 
means have a different mean than the population it came from, which we now call the 
parent population?  It couldn’t.  And it doesn’t matter how big the samples are which 
you’re taking to make the sampling distribution.  The mean of these x ’s will be the same 
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as the mean of the x’s no matter how many are in the samples (i.e. how big n is).  
Symbolically, 𝜇𝜇�̅�𝑥 = 𝜇𝜇𝑥𝑥. 
 
 But the standard deviation, the measure of variation, is a different story.  It might 
not be that unusual to find a woman who is at least six feet tall.  According to my – 
admittedly made up – parameters, normalcdf (72, 1000, 65, 3) 00982.0≈ , or 
approximately 1% of women fall in this category.  But how unusual it would be to find a 
randomly-selected sample of ten women whose average height is at least six feet!  If 
some of them were under six feet, there would have to be some very tall ones to average 
six feet or more as a group.  And the likelihood of all ten being at least six feet tall is 
miniscule (in fact, 1001.0 , or 20101 −× , a decimal point followed by 19 zeros and then a 
one).   
 
 Can you also see that the larger the sample size n that is used for the sampling 
distribution, the more unlikely it is that samples will have means very different from the 

mean of the parent population?  So it’s not true that xx σσ = .  In fact, the formula looks 

like this:  
n
x

x
σ

σ = .  The bigger n is, the larger number you’re dividing into the standard 

deviation of the parent population, and the smaller the quotient, xσ .  We’ll see a 
demonstration of this formula in a little while. 
 

 The standard deviation of the sampling distribution, xσ , has a special name.  It’s 
called the standard error of the mean. 
 
 So a sampling distribution, while not changing the mean of the parent distribution, 
tightens it up and draws it together, and the larger the sample size the greater this effect.  
But that’s not all it does.  Remember how I said that every distribution could in some 
sense become a normal one?  That’s the other part of what the Central Limit Theorem 
does for us.   
 
 First of all, if the parent distribution is itself a normal one, then the sampling 
distribution is also normal, no matter what the sample size, n, is.  However, for any 
parent distribution, even the most un-normal ones, as n gets bigger, the sampling 
distribution looks more and more normal, and at a certain point you might as well just 
consider it normal for the purposes of finding probabilities and cut-offs.  And what is that 
point?  It turns out that if n is at least 30, in other words if the sampling distribution is 
made up of samples of size 30 or more, then the distribution may be considered 
approximately normal. 
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 The upshot is that if we examine a sample of size 30 or more for some 
distribution, no matter what kind it is, we can view the sample as part of a sampling 
distribution of all samples of its size, and we can use normalcdf and invNorm to our 
hearts’ content. 
 
 To illustrate all parts of the Central Limit Theorem, let’s consider the distribution 
of a random variable in which an integer between 0 and 50, inclusive (meaning that 0 and 
50 are part of the group), is selected randomly.  So each of the 51 integers is equally 
likely to be chosen on any turn.  This is just like the example of my coming to work at 
any time between 7 a.m. and 9 a.m., except that was a continuous random variable and 
this one is discrete.  But it’s still called a uniform distribution because the probabilities 
are uniformly distributed.  It is very definitely not a normal distribution.   
 
 In this example I had the calculator generate 50 values of this random variable 
and do the one-variable stats on them.  I called this Parent Distribution #1.  Its mean was 
28.12 and its standard deviation about 14.245.  Here’s a histogram of Parent Distribution 
#1 (the class width is 2, so each bar represents 2 values): 
 
 

 
 
It looks like the skyline of a small city with no proper city planning.  There’s no pattern 
to it, and there shouldn’t be one in a uniform distribution. 
 
 I then had the calculator generate another 50 values of the random variable, and I 
called this set Parent Distribution #2.  Its mean was 22.50, and its standard deviation 
about 15.712.  Here’s its histogram: 
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It’s definitely different from the histogram of Parent Distribution #1, but it has no pattern 
either. 
 
 You probably figured out that the mean of the random variable is 25, the integer 
halfway from 0 to 50. And that mean is the population mean, µ , whereas the 28.12 and 
the 22.5 are x ’s, or sample means, because they were computed from samples, in this 
case of size n = 50. 
 
 What about the standard deviations?  Our examples gave us values of s = 14.245 
and 15.712.  It takes advanced algebra to figure out what the population standard 

deviation xσ  is:  approximately 14.72.  You can see that our samples yielded values fairly 
close to this. 
 
 On to sampling distributions.  First we generate 50 samples each of size n = 4, 
then of size n = 16, and finally of size n = 64.  Look at the histograms of their x ’s: 
 
 
n = 4: 
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n = 16: 

 
n = 64: 

 
 There are several things to notice about these histograms.  First, the axes are 
labeled x  rather than plain x, because these are sampling distributions.  Second, all three 
are centered around 25, the mean of the parent distribution.  Third, they tighten up as n 
gets bigger, and they look more and more like normal distributions.  Even when n = 4, 
the histogram has begun to look almost normal. 
 
  This table displays the means and standard deviations of the three sampling 

distributions.  Notice that the means are labeled xx , and the standard deviations xs , 
because we’re looking at samples of the sampling distributions. 
 

 n = 4 n = 16 n = 64 

xx  24.445 24.275 25.245 

xs  7.813 3.902 1.845 

 
 
 Finally, let’s see if the three samples support the formula for the standard error of 

the mean, 
n
x

x
σ

σ = .  For n = 4, we would expect 36.7
2
72.14

4
72.14

===xσ .  Our 

sample yielded 7.813.  Pretty close.   
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For n = 16, we would expect 68.3
4
72.14

16
72.14

===xσ .  Our sample yielded 

3.902.   

For n = 64, we would expect 84.1
8
72.14

64
72.14

===xσ , and we got 1.845.  Very 

close indeed.   
 
 This enlarged table shows the comparison: 
 

 n = 4 n = 16 n = 64 

xx  24.445 24.275 25.245 

xs  7.813 3.902 1.845 

xσ  7.36 3.68 1.84 

 
 That’s about all there is to say now.  Just remember, when we start doing 
inferential statistics, that the sampling distribution has the same mean as the parent 
distribution, that its standard deviation (standard error of the mean) is the standard 
deviation of the parent distribution divided by the square root of the sample size, and that 
the larger n is the closer the sampling distribution is to a normal distribution, with a 
sample size of n = 30 being the threshold for considering the distribution to be 
approximately normal.
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Exam #2 – Probability – Sample – Covers Lectures #7-11 
 
For partial credit, show your work. 
 
I am going to use the first eight letters of the alphabet, A, B, C, D, E, F, G, and H, in 
problems 1-3. 
 
1) How many different three-letter "words" (they don't have to make sense) can I make if 
I am not allowed to use the same letter more than once? 
 
 
2) How many groups of three letters can I pick, if I don't care what order I pick them in? 
 
 
3) How many different three-letter "words" can I make if I am allowed to use the same 
letter more than once? 

 
 
 
 

4) A co-ed softball team has 16 members, 7 men and 9 women.  If all players are equally 
likely to be in the starting lineup, what is the probability that a starting lineup of 10 
players will have 5 men and 5 women?   Round your answer to the nearest thousandth. 
 
 
 
 
 
In Problems 5-12, use this situation:  You have a fair coin and a spinner that has a 
pointer that can point to 1, 2, 3, 4 or 5.  A probability experiment is performed in 
which you flip the coin once and spin the spinner once.  The spinner is equally likely 
to point to any number.  In Problems 5-11, leave answers as unreduced fractions. 
 
5) List all the elements of the sample space for this experiment.  For instance, call getting 
a head on the flip and getting a 2 on the spin H2. 
 
 
 
6) What is the probability of getting a tail or spinning a 5? 
 
7) What is the probability of getting a tail and spinning a 5? 
 
8) What is the probability of not spinning a 3? 
 
9) What is the probability of getting a tail or spinning an odd number? 
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10) What is the probability of getting a tail and spinning an odd number? 
 
11) What is the probability of spinning at most a 4? 
 
12) What is the probability of spinning at least a 4? 
 
 
 
This table gives entertainment preferences for 300 people.  Use this table for 
Problems 13-18.  Leave answers as unreduced fractions.   
 

 UNDER 30 30 OR OVER 

CLUB 86 36 
THEATER 37 41 
NEITHER 52 48 

 
If a person is randomly selected from the group, what is the probability that 
 
13) The person does not prefer the theater? 
 
 
 
 
14) The person prefers clubs or the theater? 
 
 
 
 
15) The person prefers clubs given that the person is under 30? 
 
 
 
 
16) The person is under 30 given that the person prefers clubs? 
 
 
 
 
17) The person is 30 or over or prefers theater? 
 
 
 
 
18) The person is 30 or over and prefers theater? 
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A public speaker gives anywhere from 0 to 5 speeches each week.   Here is a 
probability distribution table for X, the number of speeches given during any given 
week:   
 
    X  P(X) 

   0 0.05 
    1 0.49 

    2 0.23 
3 0.12 
4 0.08 
5 0.03 

 
19) What is the mean of the distribution?  Show your work. 
 
 
 
 
 
 
 
 
 
20) To the nearest hundredth, what is the standard deviation of the distribution?  Show 
your work. 
 
 
 
 
 
 
 
 
 
 
 
21) What is the probability that in any given week the speaker will give a number of 
speeches that is within one standard deviation of the mean? 
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Problems 22-25 refer to weighing bags of M&Ms.  The weights are normally 
distributed, with mean 67.28 grams and standard deviation 1.53 grams.  Make a 
diagram for each problem and answer the question.  In Problems 22 and 23, give 
answers to the nearest ten-thousandth. 

22) What fraction of bags weigh between 66.12 grams and 68.06 grams? 

 

 

 

 

23) What fraction of bags weigh less than 66.92 grams? 

 

 

 

 

24) To the nearest hundredth, what is the cut-off for the weight of a bag of M&Ms which 
is heavier than 75% of the bags?  

 

 

 

 

25) To the nearest hundredth, what are the cut-offs for the weights of the middle 30% of 
the bags?
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Exam #2 – Probability – Sample – Answers 
 

1. 336 
 

2. 56 
 

3. 512 
 

4. 0.330 
 

5. H1, H2, H3, H4, H5, T1, T2, T3, 
T4, T5 
 

6. 6/10 
 

7. 1/10 
 

8. 8/10 
 

9. 8/10 
 

10. 3/10 
 

11. 8/10 
 

12. 4/10 
 

13. 222/300 
 

14. 200/300 
 

15. 86/175 
 

16. 86/122 
 

17. 162/300 
 

18. 41/300 
 

19. 1.78 

 
20. 1.16 

 
21. 0.72 

 
22. 0.4707 

 
 

23. 0.4070 

 
 

24. 68.31 g 

 
 

25. 66.69 g and 67.87 g 
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Lecture #13:  Confidence Intervals for the Mean 
 
Inferential Statistics 
 
 Having covered descriptive statistics and then probability, we are now embarking 
on the most significant part of the course – inferential statistics.  There are two main 
ways in which we make inferences (draw conclusions about populations from samples).  
The first is estimation, which we’ll cover this lecture and next, and the second is the 
testing of claims, which we’ll do on and off for the rest of the course. 
 
Point Estimate for the Mean 
 
 Let’s say we’re interested in guessing (inferring) the population mean shoe size 
for Mendocino College students from our Class Data Base.  For that group of 76, �̅�𝑥 ≈
8.914.  What should we guess for µ , the population mean?  I don’t see how we could do 
better than 8.914.  It’s not as though the 76 students in the class data base were chosen for 
the size of their feet.  In fact, to do all of the analyses we’re going to make, we must 
assume that the Class Data Base represents a random sample of Mendocino College 
students. 
 
 When we guess a parameter ( µ ) by picking a single number like �̅�𝑥 ≈ 8.914, we 
are making what’s called a point estimate.  So we say that x  is the point estimate for µ .  
If we’re not going to use x  (because maybe we have some other, better information), why 
did we bother to collect the data in the first place? 
 
The Margin of Error 
 
 But what if some other group of 76 made up the Class Data Base?  It’s very 
unlikely that this group would have a sample mean of 8.914, although we would expect 
this mean to be reasonably close to 8.914.  Think of a sampling distribution with samples 
of size 76, each having its own sample mean.  Our Class Data Base happens to contain 
one such sample. 
 
 So what we do, instead of limiting ourselves to a point estimate, is to create 
what’s called a confidence interval by employing a number called E, and saying that we 
are confident to a certain degree (which we will go into in great detail) that the 
population mean falls between Ex − and Ex + .  We could also use the compound 
inequality notation of algebra: ExEx +<<− µ .  This expresses the idea that µ  has 
been captured, or pinpointed, between the two extremes of Ex −  and Ex + .  (Another 
way to express this is to say that μ is contained in �̅�𝑥 ± 𝐸𝐸.  This has the advantage of 
including the values of the sample mean and the margin of error, but it lacks the limits of 
the interval.) 
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 E is called the maximum error of estimate or the margin of error and is 
sometimes abbreviated ME.  In a bit I’ll give you a formula for the margin of error, but 
first I’d like to try to give you a feel for it and the concept of confidence. 
 
 What if I just pick 5 as the margin of error?  In the shoe size example, that would 
mean 8.914 − 5 < 𝜇𝜇 < 8.914 + 5, or 3.914 < 𝜇𝜇 < 13.914.  In other words, the average 
shoe size of Mendocino College students is somewhere between a 4 and a 13½.  How 
confident am I that this statement is true?  One hundred percent confident!  I would stake 
my life on it, if need be.  But the statement is of absolutely no use.  It gives no 
information.  Let’s say you were marketing a new kind of slipper with college logos, and 
you wanted to know what sizes to make.  The population mean might turn out to be 6, or 
13.   
 
 I’d like to use a smaller E.  How about 0.2?  That would mean  8.914 − 0.2 <
𝜇𝜇 < 8.914 + 0.2, or 8.714 < 𝜇𝜇 < 9.114.  Much better!  This interval contains only one 
actual shoe size, 9.  So I would produce a lot of size 9 slippers and some in sizes slightly 
larger and smaller than 9.  But how confident could I be that I had really captured µ ?  
Not anywhere near as confident as I was about the wider interval.  I hope you get the 
sense that the narrower the interval (the smaller the margin of error, E) the more useful it 
is, but the less confident you become that you’ve actually captured the population mean.  
It’s a trade-off.  Do you want to be surer (or at least less unsure) that you’ve bracketed  
µ ?  Widen the interval; increase E.   
 
 To get a formula for E, we need to develop some new notation.  We call the 
number that expresses our confidence that we captured the mean the confidence level, or 
CL.  We can pick this level.  There are three levels that are usually used:  99%, if the 
matter is really important and we want to be quite certain; 90%, if it’s not a big deal; 95% 
if it’s in between.  Can you see that E will be largest for a 99% CL and smallest for 90%? 
 
 Now subtract CL from 1, or 100%.  For the 99% confidence level, this would give 

01.099.01 =− .  We call this α, the Greek ‘a,’ pronounced alpha.  You’ll be seeing a lot 
of α.  For the 95% confidence level it would be 05.095.01 =− , for 90% 10.090.01 =− .  
Rearranging the equation, we see that the confidence level CL is actually α−1 . 
 
 Think now of the Central Limit Theorem, which says that the sampling 
distribution of samples of size 76 will be normal, with the same mean as the parent 
population.  I want to go left and right from this mean a certain distance along the �̅�𝑥-axis 
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so that the area under the normal curve is equal to the confidence level.  That leaves α of 
the area outside my limits.  Since the curve is symmetrical, that gives an area of 2

α  

under the curve on either side of the limits: 

 
(If you’re very perceptive, you might notice that we’re playing fast and loose with x  and  
µ  here, but it’s better if you just accept it.)   
 
 At this point I have to introduce you to a certain special normal distribution.  We 
call it the z-distribution, or the standard normal distribution.  It has a mean of 0 and a 
standard deviation of 1.  It’s the first of the four great statistical distributions, or pdfs, that 
we’ll encounter in this course.  You’ve been able to avoid it up until now because we 
used a calculator to find probabilities and cut-offs for normal distributions.  Of course 
you have seen the letter z used in the z-scores or standard scores introduced in Lecture 
#6.  The standard normal distribution is centered around 0, so half its values are negative 
and half are positive.  We now give a special name to the limits of the confidence interval 
in the z distribution.  We call them 

2
αz  and 

2
αz− .  They are the cut-offs in the z 

distribution for the middle CL = α−1  of the area. 
 
 Let me redo the figure above for the z-distribution 

 
 In order to get a formula for E, we need to be able to calculate 

2
αz .  We’ll do this 

for our three confidence levels, 90%, 95% and 99%, but once having done this we will be 
able just to use the three values of 

2
αz  whenever the need arises. 

 
 Let’s start with the 99% confidence level, for which 01.099.01 =−=α , and thus 

005.0
2
01.0

2 ==α .  Here’s the diagram: 
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We can calculate 

2
αz−  by using invNorm (0.005, 0, 1) 5758.2−≈ , or 576.2− .  Of 

course 
2

αz  = invNorm (0.995, 0, 1) 5758.2≈ , or 2.576.  Either way, for a confidence 

level of 99%, we will use 2.576 for 
2

αz .   

 
 Similar calculations (invNorm (0.975, 0, 1) for a 95% confidence level, and 
invNorm (0.95, 0, 1) for a 90% confidence level) yield values for 

2
αz  of 1.960 and 

1.645.  These 
2

αz  values don’t change; they’re always the same. 

 
Here’s a table that summarizes what we’ve done: 
Confidence Level α  

2
α  

2
αz  

99% 0.01 0.005 2.576 
95% 0.05 0.025 1.960 
90% 0.10 0.05 1.645 

    
 
 
In practice, all you need at your disposal are the first and last columns: 
 

Confidence Level 
2

αz  

99% 2.576 

95% 1.960 

90% 1.645 

 
 Now at long last you’re ready for the formula for E.  Doing some mathematical 
rearranging, which, believe me, you don’t want to see, we get xzE σα

2
= , where xσ  is the 

standard error of the mean, from Lecture #12, pertaining to the sampling distribution of 

the x ’s.  The formula for the sampling error was 
n
x

x
σ

σ = .  So 
n

zE xσ
α

2
= .  Since xσ  

is the population standard deviation of the parent population, which of course we don’t 
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know (if we knew that we’d most likely know the population mean µ  and wouldn’t have 
to estimate it!), so we’ll use s, the sample standard deviation, instead, which we can do if 
n is big enough, because of the Central Limit Theorem.  This gives us our final version of 
E: 

n
szE

2
α= . 

 
(It’s final if we’re estimating the mean.  When we’re estimating some other parameter, as 
you’ll see in the next lecture, there’s a different formula.) 
 
Constructing Confidence Intervals 
 
 Using the formula, let’s now make a 99% confidence interval for the mean shoe 
size of Mendocino College students.  Remember, its form is ExEx +<<− µ .  In our 
case, this becomes 8.914 − 2.576 ∙ 1.986

√76
< 𝜇𝜇 < 8.914 + 2.576 ∙ 1.986

√76
.  E itself comes out 

to 2.576 ∙ 1.986
√76

≈ 0.587, and when the dust settles we have 8.327 < 𝜇𝜇 < 9.501, and 
that’s the answer, the 99% confidence interval for the true population mean shoe size of 
Mendocino College students.  As you can see, this interval contains three actual shoe 
sizes, 8½, 9 and 9½. 
 
 The calculator is a far easier way of constructing confidence intervals.  We use 
TInterval.  Here are the results for the three levels of confidence: 
 
99%:  8.313 < 𝜇𝜇 < 9.516 
95%:  8.461 < 𝜇𝜇 < 9.368 
90%:  8.535 < 𝜇𝜇 < 9.294 
 
The discrepancy between what we got when using the formula for E comes because we 
didn’t actually use the z-distribution in TInterval, but rather the t-distribution.  It is a 
distribution similar in shape to the z-distribution but easier to use and yielding results 
very close to what we get with the z-distribution, but erring on the side of caution.  The t-
distribution is the second of the four great distributions of statistics.  Here’s a brief 
explanation of what the t-distribution actually is. 
 
 The normal distribution covers situations where the distribution is normal 
(obviously) and we know the population standard deviation, σ.  Or, if we don’t know σ  
(and really, how could we?), at least we’re dealing with a sampling distribution of size 30 
or more, in which case we can use the sample standard deviation for σ. 
 
 If these conditions aren’t fulfilled, we can use a distribution called the t-
distribution, which was developed in the early 20th century by a person working for the 
Guinness Brewery in Dublin.  To use the t-distribution, the population must be more or 
less normally distributed, the sample size doesn’t have to be 30 or more, and we just get 
to use s as σ.  The shape of the t-distribution depends on the sample size n, and the larger 
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n is the more like the z- the t-distribution looks.  The t-distribution is always a little flatter 
than the z-distribution:  its tails are higher and its middle is lower.    
 
 To characterize a particular t-distribution, we refer, not to its sample size n, but to 
its degrees of freedom, which is one less than the sample size, or 1−n .  The concept of 
degrees of freedom will recur a few more times in this course.  Basically, in this case, if 
you have n numbers and you know their sum, you’re free to pick 1−n  of them, as long as 
they don’t add up to more than the sum, but when it comes to the last number you have 
no choice, because it’s whatever is needed to make the agreed-upon sum.   
 
 Here is the pdf for a t-distribution with d.f. = 3 (three degrees of freedom and thus 
a sample size of only 4) along with the pdf for the z-distribution: 

 
The t is the one that’s higher on the sides and lower in the middle.  The effect of this is 
that using the t in generating a confidence interval will give a wider one than using the z, 
because there is more area in the tails of the t-distribution.   
 

Notice again that the higher the level of confidence the wider the interval.  As the 
level of confidence decreases, the range of possible means narrows.  That reminds me of 
our made-up margin of error, 0.2, which made an interval containing only one size.  What 
level of confidence did that E come from?  This question turns out to be pretty easy.  
Look at the diagram: 

 
The confidence level is the shaded area, or normalcdf (8.714, 9.114, 8.914, 1.986

√76� ≈

0.620.  So the confidence level for this margin of error is about 62%, too low to be of any 
use. 
 
 What exactly does it mean to say that we are, for instance, 99% confident that the 
true mean shoe size of Mendocino College students is between 8.327 and 9.501, or  
8.914 ± 0.587?  
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 The population mean exists; we just don’t know what it is.  We take a sample, 
find its mean, and go down from it and up from it (left and right actually) a certain 
distance, E, to form an interval.  This diagram shows one such interval: 

 
This interval did include the population mean µ .  Let’s say we generate other samples 
of the same size and make intervals with them: 
 

 
Some of the intervals contain µ , and some, like the fourth one down, don’t.  If you are 
generating a 99% confidence interval, this means that on the average 99 out of 100 such 
intervals will contain µ , and one won’t.  Of course, you have no idea if the one you 
generated got lucky or not.  But you do know that the higher the level of confidence you 
use, the more likely it is that your interval does contain µ .  And even if your interval 
missed µ , it probably didn’t miss it by much. 
 
 The diagram also illustrates the reason why a higher confidence level means a 
wider interval:  the longer the horizontal line, the more likely it is that the line crosses the 
dotted line for µ . 
 
Sample Size 
 
 There are certainly reasons we might want to limit the margin of error to a certain 
size, as illustrated by our example, in order to pinpoint the population mean.  But how 
can we do this without lowering the confidence level and hence decreasing 

2
αz ?  Our 

sample standard deviation, s, is what it is and can’t be shrunk.  Where else in the formula 

n
szE

2
α=  can we look for relief?  Clearly, our only other hope is n, the sample size.  

Since n is in the denominator, increasing it will decrease E.  This leads us to the sample 
size formula for estimating the mean.  In it, we know the confidence level and the 
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sample standard deviation, and we want to know what sample size will produce a 
confidence interval with the desired margin of error. 
 

 Here’s a little algebraic manipulation, turning the formula 
n
szE

2
α= , currently 

solved for E, into an equivalent formula solved for n: 

Square both sides:    
2

2

2








=

n
szE α  

giving    
n

sz
E

2

22





 ⋅

=
α

. 

Multiply both sides by 
2E

n : 
n

sz

E
nE

E
n

2

2
2

2
2






 ⋅
⋅=⋅

α

 

and simplify.  Presto:  

2

2













 ⋅
=

E

sz
n

α
 

 For example, what if we want to estimate the population mean shoe size of 
Mendocino College students within half a size at the 95% confidence level? 

With 5.0=E the sample size formula 

2

2













 ⋅
=

E

sz
n

α
then becomes 𝑛𝑛 = �1.960∙1.986

0.5
�
2
≈

60.608.  We can’t include 0.608 of a person, so we round our answer to 61.  A sample 
size of at least 61 will ensure that we estimate the mean within half a size at the 95% 
confidence level. 
 
 Even when our sample size answer wouldn’t normally round up, we do so 
anyway, because the n we get is the absolutely smallest number that will fulfill the 
condition of estimating within a certain margin of error at a certain level of confidence.  
If we were to round down we would be below this limit.  



128 

Activity #13:  Finding confidence intervals for means 

Use the height data from the Class Data Base to answer these questions. 
 

1. Find the 99% confidence interval for the mean height of Mendocino College 
students.  Round heights to the nearest tenth. 

 
 
 
 

2. Find the 95% confidence interval for the mean height of Mendocino College 
students.  Round heights to the nearest tenth. 

 
 
 
 

3. Find the 90% confidence interval for the mean height of Mendocino College 
students.  Round heights to the nearest tenth. 

 
 
 
In #4-6, round the standard deviation to the nearest thousandth when using it in the 
sample-size formula. 
 
 

4. Find the sample size needed to estimate the mean height of Mendocino College 
students within one-half inch at the 99% confidence level. 

 
 
 
 

5. Find the sample size needed to estimate the mean height of Mendocino College 
students within one-half inch at the 95% confidence level. 

 
 
 
 

6. Find the sample size needed to estimate the mean height of Mendocino College 
students within one-half inch at the 90% confidence level.
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Worksheet #19: Confidence Intervals for the Mean  
 
Round all answers to the nearest tenth. 
 
Write these intervals using the form   ___ <  µ < ___ . 

 
1)  29.217 ±  3.753 years 

 
2) 152.987 ±  16.006 centimeters 

 
 

3) 59.324 ±  8.992 grams 
 
 

4) The mean is 4.876 pounds, and the margin of error is 0.255 pounds. 
 
 

5) The mean is 14.905 liters, and the margin of error is 3.788 liters. 
 
 

6) The mean is 7.114 minutes, and the margin of error is 1.636 minutes. 
 
 

7) �̅�𝑥 = 33.702 inches, and 𝐸𝐸 = 9.175 inches. 
 

8) �̅�𝑥 = 64.106 kilograms, and 𝐸𝐸 = 12.948 kilograms. 
 

9) �̅�𝑥 = 1.056 lightyears, and 𝐸𝐸 = 0.007 lightyears. 
 

10) The sample mean is 78.588 seconds, the sample standard deviation is 14.003 
seconds, the sample size is 58, and the confidence level is 95%. 
 

11) The sample mean is 8.930 cubic inches, the sample standard deviation is 2.068 
cubic inches, the sample size is 12, and the confidence level is 90%. 
 

12) The sample mean is 25.771 months, the sample standard deviation is 2.914 
months, the sample size is 33, and the confidence level is 99%. 
 

13)  �̅�𝑥 = 728.473 milligrams, 𝑠𝑠 = 95.365 milligrams, 𝑛𝑛 = 25, C-Level = 90%. 
 

14) �̅�𝑥 = 21.111 yards, 𝑠𝑠 = 3.829 yards, 𝑛𝑛 = 112, C-Level = 99%. 
 

15) �̅�𝑥 = 400.524 feet, 𝑠𝑠 = 47.276 feet, 𝑛𝑛 = 7, C-Level = 95%. 
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Lecture #14:  Confidence Intervals for the Proportion 
 
 In the last lecture we covered estimating a population mean, µ , from a sample, 
first using a point estimate, x , and then generating an interval, ExEx +<<− µ , which 
we could state with a certain level of confidence contains the population mean.  This time 
we’ll deal with estimating a different parameter, called the population proportion, p. 
 
 When we have a quantitative data set at the interval or ratio level of measurement, 
we have a set of numbers for which we can calculate a mean and a standard deviation.  
But when we have a binomial variable, like a ‘yes’ or ‘no,’ or a ‘male’ or ‘female,’ the 
only thing we can calculate is the fraction of the set that is in one of these categories or 
the other.   
 
 Whichever of these categories we choose to concentrate on, we can look at a data 
set and calculate the sample proportion for this category.  Let’s say we’re interested in 
the fraction of Mendocino College students who are teenagers.  From the Class Data 
Base, we find that 35 out of 76 are teenagers.  We call 35, the number in our category 
(teenagers), x.  As usual, the size of the set is n.  The fraction 

n
x , or 35

76
 in this case, is the 

sample proportion, and its symbol is p̂ , pronounced ‘p-hat.’  So the formula for the 

sample proportion is 
n
xp =ˆ . 

 
Point Estimate for the Population Proportion 
 
 When we use our sample to make inferences about the population, we begin, as 
we did in the case of the population mean, with a point estimate. Not surprisingly we use 
the sample proportion �̂�𝑝 as the estimate for the population proportion p.  So our estimate 
for the proportion of Mendocino College students who are teenagers is 35

76
≈ 0.461.  (If 

necessary, we round these proportions to the nearest thousandth, or tenth of a percent.) 
 
The Margin of Error 
 
 But, just as with the mean, we have to consider what would happen if we chose a 
different sample of 76 Mendocino College students.  Probably it would have a different 
number of teenagers, not exactly 35.  So we want to go down from our point estimate �̂�𝑝 
and up from it a certain amount, in an attempt to capture the population proportion p.  We 
call this amount, just like with the mean, the margin of error, E.  We use it to generate a 
confidence interval, which in this case will look like this:  �̂�𝑝 − 𝐸𝐸 < 𝑝𝑝 < �̂�𝑝 + 𝐸𝐸  Take 
careful note of the parameter in the middle:  it’s p, not µ , which we are estimating here. 
 
 The formula we used for E in estimating the mean simply won’t work here.  
There’s no x , and hence no s.  Before I reveal it, there’s one more symbol you have to 
understand: 𝑞𝑞� (q-hat).  It’s the fraction of the data set that is in the other category than 
the one we used for �̂�𝑝.  Here it’s the fraction of the Class Data Base that aren’t teenagers.  
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If 35 out of 76 are teenagers, then 76 − 35 = 41 aren’t.  The formula for  𝑞𝑞� is  𝑞𝑞� = 1 −
�̂�𝑝, or 

n
xnq −

=ˆ .  The two formulas are the same because p
n
x

n
n

n
xn ˆ1−=−=

− .  So in 

this case 𝑞𝑞� = 1 − 35
76

= 76−35
76

= 41
76
≈ 0.539. 

 
 So here’s the formula for the margin of error when estimating population 

proportions:  
n

qpzE
ˆˆ

2

⋅
= α .  The 

2
αz  is the same as we used in estimating the mean: 

 
Confidence Level 

2
αz  

99% 2.576 

95% 1.960 

90% 1.645 

 
 Let’s find the margin of error for estimating the population proportion of students 
who are teenagers at Mendocino College at the 99% confidence level:   

𝐸𝐸 = 𝑧𝑧𝛼𝛼
2�
�𝑝𝑝�∙𝑞𝑞�

𝑛𝑛
= 2.576�0.461∙0.539

76
≈ 0.147. 

 
 
Constructing Confidence Intervals 
 
 We’ve already done most of the work for constructing a confidence interval at the 
99% confidence level for the population proportion of students who are teenagers at 
Mendocino College. Here it is: �̂�𝑝 − 𝐸𝐸 < 𝑝𝑝 < �̂�𝑝 + 𝐸𝐸 → 0.461 − 0.147 < 𝑝𝑝 < 0.461 +
0.147, or 0.314 < 𝑝𝑝 < 0.608.  We can be 99% confident that the percent of Mendocino 
College students who are teenagers is between 31.4% and 60.8%. 
 
 Let’s have the calculator do the work now, using 1-PropZInt.  Here are the results 
for our three levels of confidence: 
 
99%:  0.313 < 𝑝𝑝 < 0.608 
95%:  0.348 < 𝑝𝑝 < 0.573 
90%:  0.366 < 𝑝𝑝 < 0.555 
 
Notice again how the interval narrows as the level of confidence decreases; we estimate 
more closely but with less confidence that we’ve actually captured the population 
proportion. 
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Looking at Polls 
 
 Estimating the population proportion is probably the application of statistics that 
you are most likely to encounter in everyday life.  It shows up all over in the form of 
opinion polls, in which random samples of people are asked their opinions about 
candidates and issues.  For example, a CBS News poll from Nov. 15-18, 2018, showed 
that 58% of those polled thought that the United States is on the wrong track, while 36% 
thought the country was headed in the right direction, and presumably 6% weren’t sure. 
 
 There were 1103 adults in the poll. The confidence level is not stated, but let’s see 

if we can figure out the margin of error.  In the formula 
n

qpzE
ˆˆ

2

⋅
= α  we’ll use 0.58 for 

�̂�𝑝 and 0.42 for 𝑞𝑞� (combining those who approve and those who weren’t sure.  Let’s start 
by assuming that the 95% confidence level was used: 
 

𝐸𝐸 = 1.960�
0.58 × 0.42

1103
≈ 0.029 

 
The margin of error is just under 3%.  So a 95% confidence interval for the population 
proportion of people who feel that the country is on the wrong track is 0.58 − 0.03 <
𝑝𝑝 < 0.58 + 0.03, of 0.55 < 𝑝𝑝 < 0.61. 
 
 
 
Sample Size 
 
 Our goal here is to produce a formula for the sample size, given the desired 
margin of error, much as we did in the lecture on confidence intervals for the mean.  The 

formula there was 

2

2













 ⋅
=

E

sz
n

α
.  That won’t work for proportions, because we don’t 

have an s, and anyway we developed a different formula for the margin of error for 
estimating proportions.  (Remember, it was rearranging the formula for E in estimating 
means that produced the formula for n.) 

 Perhaps you had a doubt about the formula 

2

2













 ⋅
=

E

sz
n

α
, namely, that if you 

were setting out to estimate the mean, how on earth would you already know the standard 
deviation of the sample whose size you are now determining?  This is a valid objection; 
the books just say that you’d know it from other studies of the variable whose mean you 
want to estimate.  This seems kind of glib.   
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 The good news is that in estimating the population proportion, we can do better.  

It appears that if we’re going to rearrange the formula 
n

qpzE
ˆˆ

2

⋅
= α  to solve for n, we’d 

have to know �̂�𝑝 (and thus 𝑞𝑞�) before we found the appropriate sample size.  But let’s take 
a look at �̂�𝑝 and 𝑞𝑞� and more importantly their product �̂�𝑝 ∙ 𝑞𝑞�: 

�̂�𝑝  𝑞𝑞� �̂�𝑝 ∙ 𝑞𝑞� 
0.1 0.9 0.09 
0.2 0.8 0.16 
0.3 0.7 0.21 
0.4 0.6 0.24 
0.5 0.5 0.25 
0.6 0.4 0.24 
0.7 0.3 0.21 
0.8 0.2 0.16 
0.9 0.1 0.09 

 
You can see that the largest value �̂�𝑝 ∙ 𝑞𝑞� ever takes on is 0.25, which happens when  �̂�𝑝 and  
𝑞𝑞� are both 0.5 (when the sample is evenly divided between the two categories).  So if we 
just replace �̂�𝑝 ∙ 𝑞𝑞� by 0.25, we’ll be on the safe side – that is, we’ll be using a sample that 
might be bigger than necessary for a certain margin of error, but it will never be smaller 
than necessary. 
 
 Time for a little algebra.  First replace �̂�𝑝 ∙ 𝑞𝑞� by 0.25 in the formula 

n
qpzE
ˆˆ

2

⋅
= α :   

n
zE 25.0

2
α= . 

Then square both sides:    
n

zE 25.02

2

2 ⋅= α . 

Then multiply both sides by n:  2

2

2

2

2 25.025.0
αα z

n
znEn =⋅⋅=⋅ . 

Finally, divide both sides by 2E :  2

2

2
2

2 25.0

E

z

E
En α

=
⋅

. 

So 2

2

2
25.0

E

z
n

α
= , or 

2

225.0 












=

E

z
n

α
. 

 The way we’ve done this formula, so that it doesn’t depend on a particular �̂�𝑝, 
means that the sample size for a given confidence level and a given margin or error will 
be the same no matter what the binomial variable is – for or against Candidate X, male or 
female, whatever. 
 
 How large a sample should we use if we want to estimate a proportion at the 95% 
confidence level within 5%?  E is 0.05, and 

2
αz  is 1.960. So 
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16.384
05.0

960.125.0
2

=





=n .  Remember that we have to round up to the next whole 

number, despite the digit in the tenths’ place.  So the sample size we should use is 385. 
 
Comparing Estimating the Mean and Estimating the Proportion 
 

Here is a side-by-side comparison of the confidence intervals covered in this 
lecture and the last one: 

 
 Estimating the Mean Estimating the Proportion 
Parameter 
 

µ  p 

Point Estimate 
 

x  p̂  

Confidence 
Interval 

 
ExEx +<<− µ  

 
EppEp +<<− ˆˆ  

 
Calculator 

 
TInterval 

 
1-PropZInt 
 

Formula for E 

n
s

zE x

2
α=  

n
qpzE
ˆˆ

2

⋅
= α  

Sample Size 
Formula 

2

2













 ⋅
=

E

sz
n

α
 

2

225.0 












=

E

z
n

α
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Activity #14:  Finding Confidence Intervals for Proportions 

In Problems 1-3, round answers to the nearest thousandth (tenth of a percent). 

1. Find the interval to estimate, at the 99% percent confidence level, the proportion 
of Mendocino College students who are at least 24 years old.   

 
 
 
 
 

2. Find the interval to estimate, at the 95% percent confidence level, the proportion 
of Mendocino College students who are at least 24 years old. 

 
 
 
 
 

3. Find the interval to estimate, at the 90% percent confidence level, the proportion 
of Mendocino College students who are at least 24 years old. 

 
 
 
 
 

4. What is the minimum sample size needed to estimate a proportion at the 90% 
confidence level within 7%?
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Worksheet #20: Confidence Intervals for the Proportion  
 
Round all answers to the nearest tenth of a percent, or thousandth. 
 
Write these intervals using the form   ___ <  p < ___ . 

 
1)  53.7% ±  3.8%  

 
2) 33.2% ±  5.3%  

 
 

3) 0.324 ±  0.049  
 
 

4) The sample proportion is 40.9%, and the margin of error is 7.6%. 
 
 

5) The sample proportion is 0.845, and the margin of error is 0.026. 
 
 

6) The sample proportion is 28.0%, and the margin of error is 1.4%. 
 
 

7) �̂�𝑝 = 51.1%, and 𝐸𝐸 = 10.8%. 
 

8) �̂�𝑝 = 0.382, and 𝐸𝐸 = 0.044. 
 
 

9) The sample size is 657, the number in the category is 122, and the confidence 
level is 95%. 
 

10) The sample size is 500, the sample proportion is 43.8%, and the confidence level 
is 90%. 
 

11) The sample size is 940, the sample proportion is 0.550, and the confidence level is 
99%. 
 

12)  𝑥𝑥 = 98, 𝑛𝑛 = 750, C-Level = 90%. 
 

13)  𝑥𝑥 = 367, 𝑛𝑛 = 1100, C-Level = 95%. 
 

14) �̂�𝑝 = 86.5%, 𝑛𝑛 = 600, C-Level = 99%. 
 

15) �̂�𝑝 = 0.255, 𝑛𝑛 = 800, C-Level = 95%. 
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Lecture #15:  Introduction to Testing Claims 
 

We’ve covered one use of inferential statistics – estimating parameters of 
populations using statistics from samples.  We did this in two ways:  first using a point 
estimate, a single guess, and then generating confidence intervals, ranges of guesses. 

 
The other common use of inferential statistics is testing claims, also sometimes  

referred to hypothesis testing or significance testing.  Whatever it’s called, it’s used in 
the social and biological sciences and in industrial and business settings.  It’s a fairly 
complicated process, one we’ll be using for most of the rest of the course, and I’m going 
to attempt to break it down for you. 
 
Stating Hypotheses and Labeling the Claim 
 

Let me describe three different situations that someone might be interested in 
studying: 
 
Situation The life expectancy 

of professional 
athletes 

How many miles a 
brand of tires lasts 

The speed with which 
a new pain reliever 
takes effect 

 
People could make different guesses about each of these situations.   The guess is 

the claim.  In the case of the athletes, you might think because they’re so fit and so rich 
that they live longer than the average person, but you might also think that because they 
use their bodies so roughly and are exposed to all kinds of temptations they might have a 
shorter life than the average.  The tires – well, if you manufactured them you might want 
to boast about how much better they are (longer they last) than other brands, but if you’re 
a rival the opposite might be the case.  The pain reliever – the quicker the better if you’re 
the manufacturer, the slower the better if you have a rival product. 

 
I’m going to pick a position for each of these situations and make a claim: 
 

Situation The life expectancy of 
professional athletes 

How many miles a 
brand of tires lasts 

The speed with 
which a new pain 
reliever takes effect 

Claim Professional athletes have 
the same life expectancy as 
other people. 

This brand of tires is 
no better than 
average. 

This pain reliever 
acts faster than the 
average painkiller. 

 
Now each claim has to be translated into a mathematical sentence.  This lecture 

and the next one will cover testing claims about the population mean, so the sentences 
will begin with µ , which will be followed by one of six symbols:  ,,,,, ≤≠><=  or ≥ .   

 
Sometimes it’s tricky to see which of the six symbols the claim implies.  Not so 

for the athletes; it’s =.   
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How about the tires?  If a tire is no better than average, either it is average or it’s 
worse than average – it doesn’t go as far before needing to be replaced.  The one thing it 
doesn’t do is go more miles than the average before needing to be replaced.  The symbol 
we use is ≤ . 

 
And the pain reliever?  Looking at the speed with which it takes effect, if we’re 

saying this one acts faster, we’re saying that its time into the bloodstream (which is how 
we’d measure speed in this case) is shorter than average, so the appropriate symbol is <. 

 
What are we comparing µ  to?  In each case, we give this a special symbol, 𝜇𝜇0, 

pronounced ‘mu sub zero,’ which simply means the baseline average.  I’m going to pick 
a value for 𝜇𝜇0 for each of our three situations. 

 
Let’s just say that the mean life expectancy of all people is 79 years, that the 

average distance that tires can drive before needing to be replaced is 30,000 miles, and 
that the average time it takes pain relievers to reach the bloodstream is 14.9 minutes.  I’m 
not saying that these numbers are accurate, but we need to use some number for 𝜇𝜇0.  

 
Now I can expand the table to incorporate the claims written as mathematical 

sentences: 
 

Situation The life expectancy of 
professional athletes 

How many miles a 
brand of tires lasts 

The speed with which 
a new pain reliever 
takes effect 

Claim Professional athletes 
have the same life 
expectancy as other 
people. 

This brand of tires is 
no better than 
average. 

This pain reliever acts 
faster than the average 
painkiller. 

Claim as a 
Mathematical 
Sentence 

79=µ  years 000,30≤µ  miles 9.14<µ  minutes 

  
Now I have to explain a perfectly obvious but very important mathematical fact, 

called the Trichotomy Property.  You may know that a dichotomy is a situation in 
which there are two choices or alternatives.  So a trichotomy has three choices or 
alternatives.  If you have two numbers, a and b, then one and only one of these three 
alternatives is true:  either ba = , or ba < , or ba > .  One of these three statements must 
be true for any two numbers a and b, and the other two must be false.  But any two of the 
statements can be combined in one sentence, as this table shows: 
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In other words, if you want to express the possibility that a could equal b or that a 

could be less than b, you write ba ≤ .  This is pronounced “a is less than or equal to b.”  
(Note that this is an either/or statement – you’re not saying that a equals b and a is also 
less than b.  Couldn’t happen.)  If you want to express the possibility that a equals b or a 
is greater than b, you write  ba ≥ , which is read “a is greater than or equal to b.”  If you 
want to express the possibility that a is less than b or that a is greater than b (but not 
equal to b), you write ba ≠ , read “a is not equal to b.” 

 
The point is that although the Trichotomy Property presents three alternative 

relationships for a and b, three other relationships are implied, and these are the ones in 
which two possible relationships are combined with the word “or.”  Thus we get the six 
symbols referred to earlier in the lecture: ,,,,, ≤≠><=  and ≥ .   

 
Having written the claims in mathematical sentences in the last version of the 

table, we now have to write which of the relationships in the Trichotomy Property have 
been excluded, and we have to do this in one mathematical sentence, using one of the six 
symbols between the µ  and the 𝜇𝜇0.  Sometimes this will involve a sentence with a 
symbol for one possible relationship (=, <, or  >), and sometimes it will involve a 
sentence with a symbol for two possible relationships ( ,, ≤≠  or ≥ ).  Let’s call this 
sentence What the Claim Leaves Out: 

 
Situation The life expectancy of 

professional athletes 
How many miles a 
brand of tires lasts 

The speed with 
which a new pain 
reliever takes effect 

Claim Professional athletes 
have the same life 
expectancy as other 
people. 

This brand of tires is 
no better than 
average. 

This pain reliever 
acts faster than the 
average painkiller. 

Claim as a 
Mathematical 
Sentence 

79=µ  years 000,30≤µ  miles 9.14<µ  minutes 

What the 
Claim Leaves 
Out 

79≠µ  years 000,30>µ  miles 9.14≥µ  minutes 
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Make sure you understand why What the Claim Leaves Out is what it is.  For 
instance, in the case of the tires the Claim combines the ba = option and the ba <  
option, so all that’s left is the ba > option, but with the pain reliever the Claim has only 
one option, ba < , so the other two, ba =  and ba > , have to be combined to make up 
What the Claim Leaves Out. 

 
Now we’re ready for the true business at hand:  stating the hypotheses.  (I know 

this seems like a very long process indeed, but on the one hand we’ve only just started, 
and on the other hand pretty soon you’ll feel like you’ve been doing this all your life.) 

 
When we test a claim, we have to state two hypotheses.  They are called the null 

hypothesis (symbol 𝐻𝐻0, ‘null’ being British for ‘zero’) and the alternative hypothesis 
(symbol 𝐻𝐻1, or sometimes 𝐻𝐻𝑉𝑉 --  we’ll use 𝐻𝐻1).  The Claim becomes one of the 
hypotheses, and What the Claim Leaves Out becomes the other, and it’s extremely 
important that you learn how to decide which is which!   

 
Either the Claim or What the Claim Leaves Out will contain the option of µ  

equaling 𝜇𝜇0 -- in other words it will have either an  =,  a ≤ , or a ≥ .  Whichever of the two 
(the Claim or What the Claim Leaves Out) has this symbol containing the idea of ‘equal’ 
becomes the null hypothesis, 𝐻𝐻0.  Sometimes it’s the Claim, and sometimes it’s What 
the Claim Leaves Out, that becomes 𝐻𝐻0.  The remaining statement, the one containing 
either <,  >, or ≠, by default becomes the alternative hypothesis, 𝐻𝐻1. 

 
Returning to our three situations, you can see that in the case of life expectancy of 

professional athletes, the Claim has the equals, so it becomes 𝐻𝐻0, and What the Claim 
Leaves Out is 𝐻𝐻1.  So, asked to state the hypotheses and label the claim, you write: 

 
𝐻𝐻0:  79=µ  years (Claim) 
𝐻𝐻1: 79≠µ  years 
 

Be sure to put ‘Claim’ in parentheses after the claim; you’ll need to refer to this later on 
when we actually test a claim.  You don’t have to write all that information in the table 
when asked to  state the hypotheses and label the claim; just cut to the chase if possible. 
 
 How about the tire situation?   
 
 𝐻𝐻0: 000,30≤µ  miles (Claim) 
 𝐻𝐻1: 000,30>µ  miles 
 
 But don’t get the idea that the claim is always 𝐻𝐻0, because it isn’t, as we see from 
the pain reliever situation: 
 
 𝐻𝐻0: 9.14≥µ  minutes 
 𝐻𝐻1: 9.14<µ  minutes (Claim) 
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 The alternative hypothesis gives each test one of three names, as follows:   
 
 If 𝐻𝐻1 contains the symbol <, the test is left-tailed. ‘Less than’ means ‘to the left 
of.’ 
 
 If 𝐻𝐻1 contains the symbol >, the test is right-tailed.  ‘Greater than’ means ‘to the 
right of.’ 
 
 If 𝐻𝐻1 contains the symbol ≠, the test is two-tailed.  ‘Unequal to’ means ‘less 
than’ (to the left of) or ‘greater than’ (to the right of). 
 
 Many words and phrases describing the size relationship between two quantities 
are straight-forward, such as ‘is less than,’ ‘is not equal to,’ and ‘is greater than.’  Some 
are more subtle.  ‘Exceeds’ is >.  Watch out for ‘at least’ (≥ ) and ‘at most’ (≤ ).  Here are 
two that imply =:  ‘hasn’t changed from,’ ‘is the same as.’  The following imply ≠:  ‘has 
changed from,’ ‘is not the same as,’ and ‘is different from.’ 
 
Deciding What to Do with the Null Hypothesis: Type I and Type II Errors 
 
 Translating a claim properly and situating it and what it leaves out correctly into 
the 𝐻𝐻0/𝐻𝐻1 structure is essential to performing the test of the claim correctly, which is why 
I’ve placed so much emphasis on it.  The next step will be to look at the sample mean x of 
a random sample from the population about whose mean we want to test a claim and to 
calculate the probability that a population with mean 𝜇𝜇0 would produce a sample with 
sample mean �̅�𝑥 or a value even more different than 𝜇𝜇0.  We’ll do this in the next lecture.   
 
 For now we’ll investigate what happens after this probability (called the p-value) 
is determined.  Using the p-value, we make a decision.  The decision is about the null 
hypothesis.  It’s always about the null hypothesis.  It’s not about the claim, unless the 
claim is the null hypothesis.   
 
 Not only is the decision always about the null hypothesis, there are only two 
possible decisions that you can make:  reject the null hypothesis, or fail to reject it.  The 
reason you’ll make one or the other of these decisions is based on the p-value described 
above, but let’s assume that you’ve made a decision and see what happens then.  The 
decision could be correct or could be wrong, depending on the actual truth or falsehood 
of the null hypothesis.  There are four possible scenarios when we look at the decision 
and at reality, neatly conveyed in this widely-used table: 
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The correct decisions are in the upper right cell, where we correctly rejected a false null 
hypothesis, and in the lower left cell, where we correctly failed to reject a true null 
hypothesis.  These are good situations (although we can never be sure we have achieved 
one of them, because we don’t in reality know the mean of the population, which is why 
we’re testing claims about it).   
 
 We want to distinguish between the two kinds of errors, because they have vastly 
different implications, so we call them Type I and Type II.  The error in the upper left cell 
occurs when we incorrectly reject a true null hypothesis.  This is a Type I error.  The 
error in the lower right cell occurs when we incorrectly fail to reject a false null 
hypothesis.  This is a Type II error. 
 
 Let’s take a specific claim, state the hypotheses, and say what would constitute 
making a Type I and a Type II error in this case.  Let’s claim that eating sardines for 
breakfast the day of a test will increase scores on the test.  Because we’re talking about 
increasing, the claim translates as 𝜇𝜇 > 𝜇𝜇0; in other words our new post-sardine mean is 
larger than our old pre-sardine mean.  The claim, lacking the equals component, is thus 
𝐻𝐻1.  What the Claim Leaves Out is thus 𝜇𝜇 ≤ 𝜇𝜇0, which becomes 𝐻𝐻0.  Thus stating the 
hypotheses and identifying the claims comes out: 
 

𝐻𝐻0: 𝜇𝜇 ≤ 𝜇𝜇0 
 𝐻𝐻1: 𝜇𝜇 > 𝜇𝜇0 (Claim)  
 
Written in words, this becomes 
 

𝐻𝐻0:  Eating sardines before a test doesn’t raise test scores. 
 𝐻𝐻1:  Eating sardines before a test raises test scores. (Claim)  
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 A Type I error will mean deciding that eating sardines raises test scores when in 
fact it doesn’t. 
 
 A Type II error will mean deciding that eating sardines doesn’t raise test scores 
when in fact it does. 
 
 Back to the general discussion.  Do you see that the fewer Type I errors you make 
the more Type II errors you’ll make and vice versa?  If you’re the kind of person who 
goes around willy-nilly rejecting null hypotheses, you’ll wind up rejecting a lot of true 
ones, but you’ll seldom fail to reject a false one because you’re so prone to rejecting 
them.  But if you’re the cautious kind who is very reluctant to reject a null hypothesis in 
case it’s true, you’ll fail to reject a lot of false ones, but you’ll seldom reject a true one 
because you don’t reject much of anything. 
 
 The probability that we made a Type I error in deciding about the null hypothesis 
in testing a certain claim is what we called the p-value, and we compare it to a quantity 
called α (the same old alpha we encountered in creating confidence intervals), which in 
this context is called the significance level, and represents the largest probability we’re 
willing to risk of making a Type I error.  We want to keep a tight lid on α.  We don’t 
want to make Type I errors!  We would rather make Type II errors, if we have to make an 
error, and of course the more strictly we limit the likelihood of making Type I errors, the 
more probable it becomes that we’re making Type II errors.   
 
 Well, we have to choose which kind of error to avoid more conscientiously, and 
the fact that it’s the Type I error reflects the caution and modesty of the scientific method.  
In research, we’re usually claiming that something has made a difference, either 
increasing or decreasing a quantity, or at least changing it.  Thus the claim is most likely 
to be the alternative hypothesis.  Rejecting the null hypothesis in these cases means 
accepting the alternative hypothesis (our claim), because of course the null and 
alternative hypotheses are complements of each other – if one is true the other isn’t, and 
vice versa.  So a Type I error, rejecting a true null hypothesis, usually means that we’re 
making an unsubstantiated claim.  We don’t want to do that very often.  We’d rather fail 
to support a true claim than support a false one.   
 
 Here’s an analogy to our criminal justice system, in which a person is considered 
innocent until proven guilty (beyond a reasonable doubt).  This will also give you insight 
into why, in making the decision about the null hypothesis, we don’t simply say ‘reject 
the null hypothesis’ or ‘accept the null hypothesis,’ instead of ‘reject the null hypothesis’ 
or ‘do not reject the null hypothesis.’  Why the double negative? 
 
 In a jury trial, the jury is asked to make a decision, based on evidence, about 
whether the defendant committed the crime.  In reality, the defendant either did or didn’t 
commit the crime, but if reality were known there would be no need for a trial.  Look at 
this revised table: 
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 Let’s look at each of the four cells.  The upper right cell means that a guilty 
person was found guilty, so justice was done assuming the law was a just one.  The lower 
left cell means that an innocent person escaped unjust punishment.  These are good 
situations.   
 

The lower right cell means a guilty person was not punished.  Too bad for the 
victim, if it was a crime with a victim.  The upper left cell means an innocent person is 
unjustly punished, maybe even killed.  We want to avoid this last injustice as much as 
possible, and so our system calls for the presumption of innocence, even if the standards 
of ‘beyond a reasonable doubt’ mean that criminals go unpunished.  We can’t control 
both of these mistakes at the same time, and we’d rather have criminals go unpunished 
than have innocent people unjustly deprived of liberty and maybe life.  At least that’s the 
theory.  And how about that double negative in ‘do not reject the null hypothesis?’  
You’ve seen movies and TV.  When the jury comes back and is asked its verdict, the 
verdict is stated either ‘guilty’ or ‘not guilty,’ rather than either ‘guilty’ or ‘innocent.’
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Activity #15:  Stating hypotheses 
 
State the null and the alternative hypotheses and identify the claim: 
 

1) The average age of taxi drivers in New York City is 36.3 years. 
 
 
 

2) The average income of nurses has changed from what it was in 1995,  $36,250. 
 
 
 

3) The average disk jockey is older than 27.6 years. 
 
 
 

4) The average pulse rate of female joggers is not less than 72 beats per minute. 
 
 
 

5) The average bowling score of people who enrolled in a basic bowling class is 
below 100. 

 
 
 

6) The average cost of a DVD player is $297.75. 
 
 
 

7) The average electric bill for residents of White Pine Estates exceeds $52.98 per 
month. 

 
 
 

8) The average number of calories in Brand A’s low-calorie meals is at most 300. 
 
 
 

9) The average weight loss of people who use Brand A’s low-calorie meals for 6 
weeks is at least 3.6 pounds.
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Worksheet #21: Stating Hypotheses about the Mean 
 
State the null and the alternative hypotheses and identify the claim: 
 

1) The average textbook has 319.6 pages. 

 

 
2) The average goat weighs at least 15.7 kg. 

 

 
3) The average time to complete a certain task exceeds 53.6 seconds. 

 

 
4) The average age of members of a certain club is at most 32.9 years. 

 

 
5) The average weight of a certain kind of plum is less than 17.6 grams. 

 

 
6) The average time on hold for customer service at a particular company is not 

more than 198.7 seconds. 

 

 
7) The average distance traveled by a snail in 4 hours exceeds 1.032 meters. 

 

 
8) The average weight of members of a youth soccer teams is 75.4 pounds. 
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Lecture #16:  Testing Claims about the Mean 
 
 This time we’re actually going to test claims from start to finish, incorporating 
what we covered in the last lecture and filling in all the missing steps.  The first test will 
take a lot of explanation, but afterwards things will go much more quickly.   
 
Testing the First Claim 
 
 Here’s the first claim:  The average Mendocino College student is at least 27 
years old. 
 
 When we make a claim, we have to specify just how willing we are to risk 
making a Type I error, rejecting a true null hypothesis, as explained in the last lecture.  
We have to pick a significance level, α, to accompany the test.  We use one of the three 
α’s that were associated with the 99%, 95%, and 90% confidence intervals, namely 1%, 
5%, or 10%, depending upon how strongly we feel about not committing a Type I error.  
Let’s use 10%, 10.0=α , for this claim. 
 
 The first step is to state the hypotheses and identify the claim.  Remember that ‘at 
least’ means greater than or equal to, so the claim translates to “𝜇𝜇 ≥ 27 years.”  This is 
clearly the null hypothesis, 𝐻𝐻0, because it contains the equals sign.  Thus the alternative 
hypothesis, 𝐻𝐻1,  has only the ‘less than’ option and is “𝜇𝜇 < 27 years.”  Here’s the first 
step: 
 
 𝐻𝐻0:  𝜇𝜇 ≥ 27 years (Claim) 
 𝐻𝐻1:  𝜇𝜇 < 27 years  
 
Clearly this is a left-tailed test, since ‘less than’ means ‘to the left of.’  The 27 years is the 
𝜇𝜇0, the alleged parameter of the population. 
 
 To investigate the claim, we look at the age data from the Class Data Base.  We 
find that for this sample, the sample mean, �̅�𝑥, is 24.645 years.  
 
 We combine all this information in a diagram of a normal distribution, which we 
are allowed to do even if age isn’t normally distributed (and it isn’t), because we’re 
looking at a sampling distribution of the sample means of samples of size n = 76:   
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We are assuming that 𝜇𝜇0, 27 years, is in fact the population mean, and we’re 
going to find out how likely it is, with this assumption, that a sample of size 76 would 
yield a sample mean as much smaller than 27 years as 24.645 years is, or even smaller.  If 
that likelihood is very small, we’ll decide that 27 years wasn’t the population mean, 
because if it were our sample mean would be a very unlikely result.  This kind of 
backwards reasoning is called indirect proof in mathematics.  

 
The number we find to describe this likelihood is called the p-value (also known 

just as p).  It is the probability that by rejecting the null hypothesis we would be making a 
Type I error, i.e. rejecting a true null hypothesis.  We will then compare the p-value to the 
level of significance we’ve selected to see if we’re willing to take that amount of risk of 
making a Type I error. 

 
The p-value is actually a shaded part under the normal pdf we drew above.  It is 

the shaded part to the left of (because we’re doing a left-tailed test) the x , 24.645 years.  
Here is the diagram with the area which is the p-value shaded: 

 
What is the p-value equal to in this case?  We already have the means to find this out.   
We use normalcdf, remembering that in a sampling distribution we must divide the 
standard deviation by the square root of the sample size to get the standard deviation 
(standard error of the mean) of the sampling distribution: 
 
 Normalcdf (0, 24.645, 27, 9.859

√76� ) ≈ 0.01865 

 
(We used the figure 9.859 because it is the sample standard deviation, s, of our sample.) 
 
 Now we label the shaded area which represents the p-value with what we found it 
to equal, to the nearest thousandth: 
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And that’s our diagram.  In practice, you can draw a single diagram like this last one for 
each claim you test. 
 
 Having calculated the p-value to be 0.019, we’re in the position of making a 
decision about the null hypothesis.  As discussed in the last lecture, there are only two 
possible decisions:  reject the null hypothesis, or don’t reject it.  We reject it if the p-
value is low enough that we don’t mind taking that much of a risk of making a Type I 
error.  We determine this by comparing the p-value to our significance level, α.  If the p-
value is less than the significance level, we can live with the risk, and we decide to reject 
the null hypothesis.  If the p-value is greater than the significance level, there’s an 
unacceptable level of risk, and we decide not to reject the null hypothesis.  In short: 

 
(Are you enough tuned in to the Trichotomy Property to wonder what happens if p 
equals  α?  No need to worry, because it never does.  The p-value is a decimal that goes 
on far beyond the hundredths place.) 
 
 For our claim, since 0.019 < 0.10, or α<p , we in fact decide to reject 0H .   
 
 You might think we’re done testing, but how would you feel if, after someone 
tells you they’re testing the claim that the average Mendocino College student is at least 
27 years old, and you ask them how their research came out, they answer, “Oh, we 
rejected the null hypothesis”?  You’d feel cheated and not at all sure about the outcome.  
Your response would probably be along the lines of, “Say what?” 
 
 So the final step in testing a claim is to state a conclusion in plain English, or to 
summarize the results.  To do this, it’s better if you abandon all attempts at creativity and 
simply follow these instructions.  First let me give them in words, and then I’ll present a 
couple of little diagrams which sum them up. 
 
 Begin with the word, “There”.  Follow with either “is” or “is not”.  Use “is” if you 
rejected the null hypothesis.  Use “is not” if you didn’t reject the null hypothesis.  
Regardless, then put “sufficient evidence to”.  Follow with “reject” if the claim turned out 
to be the null hypothesis (remember that you’ve labeled the claim and can just look back 
at the first step and see), or with “support” if the claim was the alternative hypothesis.  
Either way, then put “the claim that” and finish up by restating the claim. 
 
 Here’s the sequence: 
   

If , reject . 

         If , don’t reject . 
 

α<p 0H
α>p 0H
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The is/is not part is determined by the decision of what to do about the null 

hypothesis, in other words by the size relation between the p-value and α.  The 
reject/support part is determined by which hypothesis the claim was.  If the claim is the 
null hypothesis, we either reject it or don’t reject it.  If the claim is the alternative 
hypothesis, we either support it or don’t support it. 

 
 Here’s a nice schematic way to summarize this: 
 
 Reject 𝐻𝐻0 

 
Don’t reject 𝐻𝐻0 

The claim is 𝐻𝐻0 There is sufficient evidence 
to reject the claim that….. 

There isn’t sufficient 
evidence to reject the claim 
that….. 

The claim is 𝐻𝐻1 There is sufficient evidence 
to support the claim 
that….. 
 

There isn’t sufficient 
evidence to support the 
claim that….. 

 
 
 In testing our claim, the claim was the null hypothesis and we rejected the null 
hypothesis, so we’re in the upper left of the four summary boxes:  There is sufficient 
evidence to reject the claim that the average Mendocino College student is at least 27 
years old.  
 
 We’ll be streamlining this seemingly endless process in a number of ways, chiefly 
in how we find the p-value.  We’ll use the Stat Tests menu on the calculator and perform 
a T-Test.   
 
 Since the data are in a list we can use the Data setting for Input.  We then have to 
put in the 0µ  so the calculator will know where the distribution is supposed to be 
centered, and then the name of the list we want to analyze, and finally – most importantly 
– the form of the alternative hypothesis: 
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𝜇𝜇: ≠  𝜇𝜇0      < 𝜇𝜇0       > 𝜇𝜇0 
  
You have to pick one of the three possibilities to highlight, and it has to match your 
alternative hypothesis, or the calculator will be finding some unwanted area for the p-
value.  Here’s the T-Test screen: 
 

 

 
When you pick the Calculate option in the bottom row, you get this screen: 
 

 
 

First, it reminds you what you said the alternative hypothesis was (𝜇𝜇 < 27 in this case).  
Don’t worry about the next line, “t = …”, which refers to the other, more cumbersome 
method of claims testing, which we skipped.  The p in the next line is the p-value, which 
is what we were after all this time.  Notice how close the p-value, 0.020, is to the p-value 
we got when we used normalcdf, just a little bigger, as I said it would be. 
 
 You can also choose the Stats option for the Input, and if you don’t have the data 
set in a list, you have to use this option.  You’ll be asked to input the 𝜇𝜇0 and the s, �̅�𝑥 and 
n of the sample, and finally, the all-important alternative hypothesis: 
 

 
 

Upon opting for Calculate, the display is identical to the previous result: 
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Testing the Second Claim 
 

At last, here’s the second claim:  The average Mendocino College student is taller 
than 5’4”.  This time, let’s use the 5% significance level ( 05.0=α ). 

 
 In testing this claim let’s follow the direction line you will use in the future: 
 
 
STEPS IN TESTING CLAIMS 

A) State the hypotheses and identify the claim. 
B) Perform the test using the sample data or statistics, and make a diagram 

showing the distribution, the parameter and the statistic.  Shade and label 
the p-value, which should be rounded to the nearest thousandth.   

C) Decide whether or not to reject the null hypothesis. 
D) Summarize the results. 

 
 The claim translates easily enough into the mathematical sentence “𝜇𝜇 >
64 inches.”  This is clearly the alternative hypothesis, 𝐻𝐻1, because it lacks the equals 
sign.  Thus the null hypothesis, 𝐻𝐻0, combines the other two possibilities, the ‘is less than’ 
and the ‘is equal to,’ to become “𝜇𝜇 ≤ 64 inches.”  Here’s Step A: 
 
 𝐻𝐻0:  𝜇𝜇 ≤ 64 inches 
 𝐻𝐻1:  𝜇𝜇 > 64 inches (Claim)  
 
Clearly this is a right-tailed test, since ‘greater than’ means ‘to the right of.’  The 64 
inches is 𝜇𝜇0.  
 Performing 1-Variable Stats on the height list gives us the sample mean, 66.224  
inches, so we can draw the initial diagram for Step B: 
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Here’s the diagram after we’ve shaded the p-value: 
 

 
Let’s find the p-value using T-Test: 
 

 
Notice that 𝜇𝜇0 has been changed to reflect the new claim and that the alternative 
hypothesis now reflects the ‘greater than’ option.  Calculating gives this screen: 
 

 
So what’s the p-value?  One thing it isn’t is 5.590!  Remember, the entire pdf has an area 
underneath it of 1, and the p-value is part of that area.  Or, another way of knowing that 
the p-value can’t be bigger than 1 is to remember that probabilities can never exceed 1.  If 
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you see a p-value that appears to be bigger than 1, remember to look at the right end of 
the number, where there will be an E – some-whole-number-or-other. The p-value is 
actually 5.590 × 10−6, or 0.000006.  Rounded to the nearest thousandth, we get 0.000 
(it’s closer to zero thousandths than to one thousandth).  But that seems a little harsh – 
after all there is some area there – so we adopt the following notation to show that while 
the p-value didn’t even make it to 0.001, it is in fact greater than zero:  +000.0 . 
Here’s the final diagram for Step B: 
 

 
Since 05.0000.0 <+ , making α<p , the answer to Step C is “Reject 𝐻𝐻0.” 
 

 Step D finds us in the lower-left cell of the summary boxes (we did reject the null 
hypothesis, and the claim was the alternative hypothesis).  So Step D reads, “There is 
sufficient evidence to support the claim that the average Mendocino College student is 
taller than 5’4”.”  If the claim weren’t true, the likelihood of our group of 76 averaging so 
great a height is almost nil.   
 
Testing the Third Claim 
 
 Here’s the third claim:  The average Mendocino College student has 1½  pets.  (I 
know you can’t have 1½ pets, but a group of people can average 1½ pets.) Here let’s use 
the 1% significance level ( 01.0=α ). 
 

A) State the hypotheses and identify the claim. 
 

 The claim has the ‘equals’ and is thus the null hypothesis, leaving the ‘is less 
than’ and the ‘is greater than’ to combine to make the alternative hypothesis ‘doesn’t 
equal’: 

𝐻𝐻0:  𝜇𝜇 = 1.5 (Claim) 
 𝐻𝐻1:  𝜇𝜇 ≠ 1.5 
 

B) Perform the test using the sample data or statistics, and make a diagram 
showing the distribution, the parameter and the statistic.  Shade and label the p-
value, which should be rounded to the nearest thousandth.   
 

 
Here’s the T-Test screen:  
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and the result: 
 

 
 You might think that the diagram should look like this, but as you can tell by the 
lines crossing it out, there’s something wrong: 

 
What’s wrong is that we’re doing a two-tailed test, and the p-value of 0.126 includes the 
possibility not only that the mean is greater than 1.5 by a certain amount but also the 
possibility that it’s less than 1.5 by the same amount.  When we claim that the average 
number of pets is 1.5, that claim could be refuted by a much larger sample mean or a 
much smaller one.  We got a larger one, but we also have to include the corresponding 
possibility of our having gotten a smaller one.   
 
 So what you do is to shade in a mirror-image of the shaded area on the opposite 
side of the 𝜇𝜇0.  But don’t give it a number on the �̅�𝑥-axis, since we didn’t get a sample 
mean less than 𝜇𝜇0.  And then, to show that the p-value includes both options, write the p-
value above the center of the pdf and draw lines from it to both of the areas that compose 
it (each of which by itself would be only 0.126

2� = 0.063). 
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C) Decide whether or not to reject the null hypothesis. 
 

 Since 0.126 > 0.01, or α>p , we do not reject the null hypothesis. 
 

D) Summarize the results.  
 
The claim was the null hypothesis, and we didn’t reject the null hypothesis, so 

we’re in the upper-right rectangle:  There isn’t sufficient evidence to reject the claim that 
the average Mendocino College student owns 1.5 pets.  It could be true, in the sense that 
about 13% of the time a sample of 76 such numbers of pets would have a sample mean as 
different from, or even more different from, 1.5, even if 1.5 were the true population 
mean.
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Activity #16:  Testing claims about the mean 

 
STEPS IN TESTING CLAIMS 

A) State the hypotheses and identify the claim. 
B) Perform the test using the sample data or statistics, and make a diagram 
showing the distribution, the parameter and the statistic.  Shade and label the p-
value, which should be rounded to the nearest thousandth.   
C) Decide whether or not to reject the null hypothesis. 
D) Summarize the results. 

 

1) The average Mendocino College student has a shoe size smaller than 9.5.   Use 
the 5% significance level. 

 
 
 
 
 
 

2) The average Mendocino College student is 5' 6".  Use the 10% significance level. 
 

 
 
 
 
 
 
  

3) The average Mendocino College student is older than 23.  Use the 1% 
significance level. 
 

 
 
 
 
 

4) The average Mendocino College student has at most two pets.  Let α = 0.10.
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Worksheet #22: Finding P-Values in Tests of Claims about the 
Mean 
 
Find the p-values to the nearest thousandth for these claims. Draw a diagram for 
each problem. 
 

1) Claim:  The average textbook has 319.6 pages. 
A sample of 42 textbooks has a mean of 304.3 pages and a standard deviation of 
41.8 pages. 

 
2) Claim: The average goat weighs at least 15.7 kg. 

A sample of 15 goats has a mean weight of 14.9 kg and a standard deviation of 
2.8 kg. 

 
3) Claim:  The average time to complete a certain task exceeds 53.6 seconds. 

A sample of 29 times to complete the task has a mean of 55.1 seconds and a 
standard deviation of 5.7 seconds. 

 
4) Claim:  The average age of members of a certain club is at most 32.9 years. 

A sample of 35 members of the club has a mean age of 41.3 years and a standard 
deviation of 8.7 years. 

 
5) Claim: 𝜇𝜇 < 17.6 grams 

�̅�𝑥 = 15.9 grams 
𝑠𝑠 = 2.7 grams 
𝑛𝑛 = 29 
 

6) Claim: 𝜇𝜇 ≤ 198.7 seconds 
�̅�𝑥 = 203.5 seconds 
𝑠𝑠 = 8.6 seconds 
𝑛𝑛 = 41 
 

      7)  Claim: 𝜇𝜇 > 1.032  meters 
�̅�𝑥 = 1.047 meters  
𝑠𝑠 = 0.013 meters 
𝑛𝑛 = 75 

 
      8)  Claim: 𝜇𝜇 = 75.4 pounds 

�̅�𝑥 = 73.1 pounds  
𝑠𝑠 = 3.7  pounds 
𝑛𝑛 = 25 
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Worksheet #23: Summarizing the Results of Tests of Claims 
about the Mean  
 
Choose from is/isn’t and support/reject in each problem. 
 

1) Claim:  The average textbook has 319.6 pages. 

The significance level is 5%, and the p-value is 0.022. 
 

2) Claim: The average goat weighs at least 15.7 kg. 

The significance level is 1%, and the p-value is 0.144. 
 

3) Claim:  The average time to complete a certain task exceeds 53.6 seconds. 

The significance level is 10%, and the p-value is 0.084. 
 

4) Claim:  The average age of members of a certain club is at most 32.9 years. 

The significance level is 1%, and the p-value is 0.000+. 
 

5) Claim: 𝜇𝜇 < 17.6 grams 

𝛼𝛼 = 0.05 
p-value = 0.001 
 

6) Claim: 𝜇𝜇 ≤ 198.7 seconds 

𝛼𝛼 = 0.10 
p-value = 0.000+  
 

7) Claim: 𝜇𝜇 > 1.032  meters 

𝛼𝛼 = 0.01 
p-value = 0.000+ 
 

8) Claim: 𝜇𝜇 = 75.4 pounds 

𝛼𝛼 = 0.05 
p-value = 0.005 
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Lecture #17:  Testing Claims about the Proportion 
 
 Last lecture was the hard part; now you know everything you need to know about 
testing claims and can apply your knowledge to testing claims about other parameters 
besides the mean.  This lecture we’ll test claims about the population proportion, but only 
a very small part of this process will be at all new to you. 
 
 You remember the basics from when we covered estimating population 
proportions in Lecture #14.  If a variable is binomial, we call p the proportion in the 
population for which the variable was in one of the two categories.  In a sample from that 
population, the sample proportion is called �̂�𝑝 and equals 

n
x , where x is the number of 

times the variable was in the category of interest and n, of course, is the sample size. 
 
 So the direction lines 
 
STEPS IN TESTING CLAIMS 

A)State the hypotheses and identify the claim. 
B) State the values of x and n.  Perform the test using the sample data or 
statistics, and make a diagram showing the distribution, the parameter and the 
statistic.  Shade and label the p-value, which should be rounded to the nearest 
thousandth.     
C)Decide whether or not to reject the null hypothesis. 
D)Summarize the results. 

 
are perfectly applicable to testing claims about the proportion, with the addition of stating 
the values of x and n.  The only differences are that the parameter is p instead of µ , that 
the value of the parameter mentioned in the claim is 𝑝𝑝0 instead of 𝜇𝜇0, and that the statistic 
is �̂�𝑝 instead of �̅�𝑥.  Oh, and one more:  we will never use the t-distribution in testing 
claims about the proportion, only z. 
 
 Here goes. 
 
Testing the First Claim 
 
 Here’s the claim:  At most one-third of people stopped by the CHP for suspected 
DUI test above the legal limit.  To test this claim, a random sample of 200 people stopped 
for suspected DUI is selected, and of these it turned out that 36% tested above the legal 
limit.  Let’s choose the 5% significance level. 
 

A) Remembering to use p for the parameter, and that ‘at most’ encompasses the 
‘is less than’ and the ‘equals’ options, the hypotheses become 

𝐻𝐻0: 3
1≤p  (Claim) 

𝐻𝐻1: 3
1>p   
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 This is a right-tailed test.  
 

Let’s skip the build-up and go directly to the Stat Test menu on the calculator.  
We’ll be using 1-PropZTest. 

   
Putting 1/3 in for 𝑝𝑝0 seems obvious, and when we enter that the calculator uses this 
repeating decimal in all its glory: .3333333333…  But the next line asks for x, which is 
the number of people out of the 200 who tested above the legal limit, and that’s 
information we weren’t given directly.  We’ll have to use a little arithmetic, or a little 
algebra.  With common sense, you’ll realize that since 36% of the 200 people in the 
sample tested above the legal limit, to find out how many people that actually is you’ll 
take 36% of 200 and come up with x = 72 by multiplying 0.36 by 200. Without common 
sense, you’ll have to work harder.  Take the equation 

n
xp =ˆ  and substitute 0.36 for �̂�𝑝 

and 200 for n: 

200
36.0 x

=  

 
Multiply both sides by 200 and again you’ll get x = 72. 
 
 Either way, the 1-PropZTest screen looks like this: 
 

 
and, upon calculation, the screen becomes: 
 

 
Watch out for all the p’s.  The one with the hat is the sample proportion (which we didn’t 
actually input – the calculator computed it from the x and the n), and the one without the 
hat is our p-value. 
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 B)  𝑥𝑥 = 72; 𝑛𝑛 = 200 

 
C)  Here again is the way to decide whether or not to reject the null hypothesis: 

 
If α<p , reject 0H . 

  If α>p , don’t reject 0H . 
 
 In this case, 0.212 > 0.05, or α>p , so do not reject 0H . 
 

D)  Here again are the rectangles for summarizing the results:  
 
 Reject  

𝐻𝐻0 
 

Don’t reject  
𝐻𝐻0 
 

The claim is 𝐻𝐻0 
 

There is sufficient evidence 
to reject the claim that….. 

There isn’t sufficient 
evidence to reject the claim 
that….. 

The claim is 1H  There is sufficient evidence 
to support the claim 
that….. 
 

There isn’t sufficient 
evidence to support the 
claim that….. 

 
Since we didn’t reject 𝐻𝐻0 and since the claim was  𝐻𝐻0, we’re in the upper-right rectangle:  
There isn’t sufficient evidence to reject the claim that at most one-third of people 
stopped by the CHP for suspected DUI test above the legal limit.   

 
Testing the Second Claim 
 
 Here’s the second claim:  The majority of Mendocino College students are 
female.  Let 𝛼𝛼 = 0.05.  Our sample is the Class Data Base, in which 47 of the 76 people  
in the sample are female.   
 
 What is a majority?  It’s more than half.  If a group is split 50-50, there isn’t a 
majority.  Any time you see the phrase “A majority…” you don’t have to read any further 
to translate it to a mathematical sentence.  It’s always p > 0.5.  (Likewise, “A minority…” 
always translates as p < 0.5.)  And of course it’s always the alternative hypothesis.  The 
null hypothesis has to include the ‘is less than’ and ‘equals’ options.   
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A)  𝐻𝐻0:  5.0≤p   
      𝐻𝐻1:  5.0>p  (Claim) 

 
 

B) 𝑥𝑥 = 47; 𝑛𝑛 = 76 
 

 

 
 Notice that the calculator found �̂�𝑝 for us.  Here’s the diagram: 

 
C)  0.019 < 0.05, or 𝑝𝑝 < 𝛼𝛼, so reject 𝐻𝐻0.   

 
 D)  Since we did reject 𝐻𝐻0, and since the claim was 𝐻𝐻1, we’re in the lower-right 
rectangle:  There is sufficient evidence to support the claim that the majority of 
Mendocino College students are female.
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Activity #17:   Testing Claims about the Proportion 
 
STEPS IN TESTING CLAIMS 

A)State the hypotheses and identify the claim. 
B)State the values of x and n.  Perform the test using the sample data or 
statistics, and make a diagram showing the distribution, the parameter and the 
statistic.  Shade and label the p-value, which should be rounded to the nearest 
thousandth.   
C)Decide whether or not to reject the null hypothesis. 
D)Summarize the results. 

 
Use the 5% significance level in testing these claims. 
 

1) It has been claimed that a minority of Americans are in favor of national health 
insurance.  In a survey in which 400 people were interviewed, it was found that 
47% were in favor of national health insurance.  

 
 
 
 
 
 
 

2) A researcher studying demographics thinks that the majority of Mendocino 
College students are natives of Lake or Mendocino County.  Test this claim. 

 
 
 
 
 
 
 
 

3) Three-fourths of Mendocino College students own at least one pet.
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Worksheet #24: Stating Hypotheses about the Proportion 
 
State the null and the alternative hypotheses and identify the claim: 
 

1) Less than 30% of households in California have high-speed internet. 

 
 

2) At least 3/5 of community college students are full-time. 

 
 

3) A majority of preschoolers know how to access games on their parents’ 
phones. 

 
 

 
4) 45% of community college students are on their parents’ health plans. 

 
 
 

5) A minority of domestic cats are indoor cats. 

 
 

6) At most one-fifth of Mendocino County roads are adequately maintained. 
 
 
 
7) 64% of apples sold at the local health food store are grown locally. 
 
 
 
8) More than 96% of local preschoolers are up to date on their vaccines. 

 
 

9) A minority of professional baseball players are left-handed. 
 
 
 
10)  A majority of professional baseball players are right-handed. 
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Worksheet #25: Finding P-Values in Tests of Claims about the 
Proportion 
 
Find the p-values to the nearest thousandth for these claims. Draw a diagram for 
each problem. 
 

1) Less than 30% of households in California have high-speed internet. 
A sample of 950 households showed that 26% had high speed internet. 
 

2) At least 3/5 of community college students are full-time. 
Of 620 community college students, 341 were full-time. 
 

3) A majority of preschoolers know how to access games on their parents’ 
phones. 
A sample of 350 preschoolers showed that 54% knew how to access games on 
their parents’ phones. 
 

4) 45% of community college students are on their parents’ health plans. 
Of 620 community college students, 40% are on their parents’ health plans. 
 

5) A minority of domestic cats are indoor cats. 
A survey of 250 cats showed that 48% are indoor cats. 
 

6) At most one-fifth of Mendocino County roads are adequately maintained. 
𝑛𝑛 = 180 
 �̂�𝑝 = 25% 
 

7) 64% of apples sold at the local health food store are grown locally. 
𝑛𝑛 = 720 
𝑥𝑥 = 490 

 
8) More than 96% of local preschoolers are up to date on their vaccines. 

𝑛𝑛 = 900 
�̂�𝑝 = 98% 

9) A minority of professional baseball players are left-handed. 
𝑛𝑛 = 500 
𝑥𝑥 = 246 

 
10) A majority of professional baseball players are right-handed. 

𝑛𝑛 = 500 
�̂�𝑝 = 50.8% 
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Worksheet #26: Summarizing the Results of Tests of Claims 
about the Proportion 
 
Choose from is/isn’t and support/reject in each problem. 
 

1) Less than 30% of households in California have high-speed internet. 
The significance level is 1%, and the p-value is 0.004. 
 

2) At least 3/5 of community college students are full-time. 
The significance level is 5%, and the p-value is 0.006. 
 

3) A majority of preschoolers know how to access games on their parents’ 
phones. 
The significance level is 10%, and the p-value is 0.067. 
 

4) 45% of community college students are on their parents’ health plans. 
The significance level is 5%, and the p-value is 0.012. 
 

5) A minority of domestic cats are indoor cats. 
𝛼𝛼 = 0.05 
p-value = 0.264 
 

6) At most one-fifth of Mendocino County roads are adequately maintained. 
𝛼𝛼 = 0.10 
p-value = 0.215 

 
 
7) 64% of apples sold at the local health food store are grown locally. 

𝛼𝛼 = 0.01 
p-value = 0.000+ 

 
8) More than 96% of local preschoolers are up to date on their vaccines. 

𝛼𝛼 = 0.05 
p-value = 0.001 
 

9) A minority of professional baseball players are left-handed. 
𝛼𝛼 = 0.10 
p-value = 0.360 

 
10)  A majority of professional baseball players are right-handed. 

𝛼𝛼 = 0.05 
p-value = 0.360 
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Lecture #18:  Testing Claims about the Standard Deviation 
 
 Now we are going to test claims about a third parameter, the population standard 
deviation.  You might wonder why we’d want to do this.  The population mean and the 
population proportion make sense – you’d want to be able to draw inferences about them.  
The standard deviation might seem irrelevant, but it isn’t.  There are situations in which 
it’s important to be able to draw conclusions about this measure of variation. 
 
 Here’s a situation in which it’s important for the standard deviation to be small:  
You’re manufacturing screws.  The mean diameter of the screws is obviously important 
for the screws to fit, but if the diameters have a lot of variation many of the screws won’t 
be usable.   Variation needs to be kept very small.  And here’s a situation in which it’s 
important for the standard deviation to be large:  You’re giving a standardized test.  If all 
the scores are similar (with little variation), your test won’t be useful for differentiating 
the test performances; everybody’s score will be about the same. 
 
 So we want to be able to test claims about σ, the population standard deviation, 
and to do so we have to know about the third of the four great statistical distributions, or 
probability density functions.  The first two were the normal, in particular the z-
distribution, and the t-distribution, with its degrees of freedom.  Now we’re going to use 
the chi-square distribution, or 𝜒𝜒2-distribution (pronounced with a hard ‘k’ – ‘kigh’ – if 
you say ‘chee’ or ‘chai’ you will sound uneducated, heaven forbid). 
 
 Whereas the z- and the t- distributions are symmetrical and theoretically extend 
forever in both directions, the 𝜒𝜒2-distribution has neither characteristic.  It starts at 0, 
extends forever to the right, and is not symmetrical, though it becomes more so as the 
number of degrees of freedom increases.  It has degrees of freedom, like the t-
distribution, and you determine them the same way – by subtracting one from the sample 
size, n. 
 
 The reason that the 𝜒𝜒2-distribution starts at 0 is, as the name implies, because it 
involves adding things that are squared and thus cannot be negative.  The more of these 
“things” that are added, the larger the number of degrees of freedom and the bigger the 
value of 𝜒𝜒2.  Here’s the 𝜒𝜒2 pdf for a 𝜒𝜒2 with three degrees of freedom (n = 4): 
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Its hump occurs over 𝜒𝜒2= 1.  Note that we put a vertical axis at 0, because the pdf doesn’t 
extend to the left of 0.  Here’s the 𝜒𝜒2 pdf for a 𝜒𝜒2 with seven degrees of freedom (n = 8): 
 

 
 
Its hump occurs over 𝜒𝜒2= 5.  Finally, here’s the 𝜒𝜒2 pdf for a 𝜒𝜒2 with 14 degrees of 
freedom (n = 15): 
 

 
 
Its hump occurs over 𝜒𝜒2= 12. 
 
 Here are all three 𝜒𝜒2’s on one graph: 
 

 
 
As you can see, the curves become lower and more symmetrical as the number of degrees 
of freedom increases, and the humps move to the right and are located over d.f. 2− , or 

3−n . 
 
 Testing claims about the population standard deviations involves finding areas 
under 𝜒𝜒2 pdf’s.  We can’t use the calculator’s test menu.  (You might notice that there is 
a 𝜒𝜒2-Test listed on the menu, but it isn’t meant for this purpose and can’t be used for it.) 
 
 To determine what area to find under the pdf involves a process we haven’t used 
yet in testing claims, though it’s used in the old-fashioned, classical method of testing all 
claims about parameters:  finding the test value.  The test value comes from a formula 
involving the parameter (𝜎𝜎0 in this case) and the statistic (s, the standard deviation of our 
sample), and it is this test value which we place on the 𝜒𝜒2-distribution axis. 
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 Before we get to that, though, let’s practice finding areas under 𝜒𝜒2 pdfs.  
  
 Say you want to find the area under a 𝜒𝜒2 pdf for a sample size of 10 to the left of 
3.782.  Here’s the diagram: 
 

 
I put 7 (d.f. = n – 1 = 10 – 1 = 9, and the hump is over d.f. – 2 = 9 – 2 = 7) under the 
hump so we could decide which side of the hump to put 3.782 on.  Remember to label the 
axis 𝜒𝜒2.  To find the shaded area, use 𝜒𝜒2cdf, followed by the left-shaded number, the 
right-shaded number, and the number of degrees of freedom:   
 
 𝜒𝜒2 cdf ( 0, 3.782, 9 ) 075.0≈  
 
 One more:  What is the area under a 2χ  pdf for a sample size of 25 to the right of 
31.621? 
 

 
 𝜒𝜒2cdf ( 31.621, 1000, 24 ) 137.0≈ . 
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 Notice how much more symmetrical and normal this curve looks than the one for 
d.f. = 9. 
 
 Now we’re ready to test claims.  The number that you’ll be putting on the 𝜒𝜒2-axis, 
the test value, will be given by this formula: 
 

 TEST VALUE:  ( )
2

0

2
2 1

σ
χ sn −

= . 

 
 Here are the directions for testing claims about σ: 
 

A)State the hypotheses and identify the claim. 
B)Find the test value, and determine the p-value.  Make a diagram showing the 
distribution and the test value.  Shade and label the p-value, which should be 
rounded to the nearest thousandth.      
C)Decide whether or not to reject the null hypothesis. 
D)Summarize the results. 

 
As you can see, the directions are identical to those for testing claims about µ  and p 
except for the second step.  
 
Testing the First Claim  
 

The standard deviation of the shoe sizes of Mendocino College students exceeds 
1.8 sizes.  Use 𝛼𝛼 = 0.10. 

 
A)   𝐻𝐻0:  𝜎𝜎 ≤ 1.8 
 𝐻𝐻1:  𝜎𝜎 > 1.8 (Claim) 
 
B)  So 1.8 is 𝜎𝜎0, and from the calculator we get 1.986 for s, so  
χ2 = (𝑛𝑛−1)𝑠𝑠2

𝜎𝜎02
= (76−1)∙1.9862

1.82
≈ 91.301.  We’re doing a right-tailed test, so the p-value is 

given by 𝜒𝜒2cdf (91.301, 1000, 75)≈ 0.097. 
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C) 0.097 < 0.10, or , so reject 𝐻𝐻0. 
D) Lower-left rectangle:  There is sufficient evidence to support the claim that 

the standard deviation of the shoe sizes of Mendocino College students 
exceeds 1.8 sizes. 
 

Testing the Second Claim 
 
 The variance of the ages of Mendocino College students is at least 125.  Use the 
10% significance level. 
 
 Notice that the parameter mentioned in this claim is the variance, 2σ , not the 
standard deviation, σ.  This means that when you go to figure out the 𝜒𝜒2 test value, you’ll 
use the 110 as is, without squaring it. 
 
  A)   𝐻𝐻0:  𝜎𝜎2 ≥ 125 (Claim) 
  𝐻𝐻1:  𝜎𝜎2 < 125  
 

B)  So 125 is 2
0σ , and the calculator gives 9.859 for s, so   

χ2 = (𝑛𝑛−1)𝑠𝑠2

𝜎𝜎02
= (76−1)∙9.8592

125
≈ 58.320.  This is a left-tailed test, so the p-value is given by  

𝜒𝜒2cdf (0, 58.320, 75) ≈ 0.077. 
 

α<p
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C)  0.077 < 0.10, or α<p , so reject 𝐻𝐻0𝐻𝐻0 
.  
 

 D)  Upper-left rectangle:  There is sufficient evidence to reject the claim that the 
variance of the ages of Mendocino College students is at least 125. 
 
 
 
 
 
 
Testing the Third Claim 
 
 Remember the coffee machine from Lecture #11, the one that was way out of 
whack?  Well, perhaps it’s fixed now – we’ll see.  By ‘fixed’ we mean that the standard 
deviation of the number of fluid ounces it deposits in cups is at most 0.05 fluid ounces.  If 
the standard deviation is less than or equal to 0.05 fluid ounces we say that the machine is 
working properly; otherwise we call the company that owns the machine to come and 
service it yet again. 
 
 So we take a random sample of eight such cups and measure their contents.  
These are the volumes in fluid ounces:   6.02 5.89 6.05 6.01     5.96    5.87    
6.03    5.92 
 
 Let’s claim that the machine is working properly, i.e. that the standard deviation 
of the volumes is at most 0.05 fluid ounces.  Use 01.0=α . 
 
A)   𝐻𝐻0:  05.0≤σ  fluid ounces (Claim) 
 𝐻𝐻1:  05.0>σ   
 
We put the eight volumes in a list, and the calculator tells us that the sample standard 
deviation is 0.069. 
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B)  So 𝜎𝜎0 is 0.05, and s is 0.069, so  ( ) ( ) 331.13
05.0

069.0181
2

2

2
0

2
2 ≈

−
=

−
=

σ
χ sn .  

This is a right-tailed test, so the p-value is 𝜒𝜒2cdf ( 13.331, 1000, 7 ) 064.0≈ . 
 

 
C)  0.064 > 0.01, or α>p , so do not reject 0H . 
 
D)  Upper-right rectangle:  There isn’t sufficient evidence to reject the claim that 

the standard deviation of the volumes is at most 0.05 fluid ounces, or that the machine is 
working properly.  No need to call for servicing.
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Activity #18:  Testing claims about the standard deviation 
 

Perform hypothesis tests on these claims.   
 
Include these steps in each test: 

A)State the hypotheses and identify the claim. 
B)Find the test value, and determine the p-value.  Make a diagram showing the 
distribution and the test value.  Shade and label the p-value, which should be 
rounded to the nearest thousandth.     
C)Decide whether or not to reject the null hypothesis. 
D)Summarize the results. 

 
 

1) At the 5% significance level, test the claim that the standard deviation of the 
heights of Mendocino College students is at most 3.5 inches. 

 
 
 
 
 
 
2) At the 1% level of significance, test the claim that the variance of the number of 

pets owned by students at Mendocino College is less than 16. 
 
 
 
 
 
 

3) A machine is supposed to fill bags with exactly 16 ounces of pasta.  The machine 
is said to be working properly if the standard deviation of the weights of the pasta 
in the bags is at most 0.1 ounce.  Six randomly-selected bags are weighed, and the 
resulting weights in ounces are:  
 
 16.15  15.88  15.82 
 16.03  16.10  15.76 
 

 Test the claim that the machine is working properly at the 5% significance level. 
 
 
 
 
 

TEST VALUE:  ( )
2

0

2
2 1

σ
χ sn −

=
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Worksheet #27: Finding Areas under 𝝌𝝌𝟐𝟐 PDFs 
 
Round these areas under 𝝌𝝌𝟐𝟐 pdfs to the nearest thousandth. 
 

1) To the right of 32.895 for a sample size of 43. 

 
 

2) To the left of 12.934 for a sample size of 50. 

 
 

3) To the right of 4.721 for 𝑛𝑛 = 4. 
 
 
 

4) To the left of 18.025 for 𝑛𝑛 = 28. 
 
 
 

5) To the left of 20.778 for a sample size of 72. 

 
 

6) To the right of 10.903 for a sample size of 8. 
 
 
 

7) To the right of 123.456 for 𝑛𝑛 = 113. 
 
 
 

8) To the left of 18.672 for 𝑛𝑛 = 68. 
 
 
 

9) To the right of 65.003 for a sample size of 55. 

 
 

10) To the left of 81.256 for 𝑛𝑛 = 99. 
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Worksheet #28: Stating Hypotheses in Tests of Claims about 
the Standard Deviation 
 
State the null and the alternative hypotheses and identify the claim: 
 

1) The standard deviation of heights of 4-year-olds exceeds 4.1 inches 

 
 

2) The standard deviation of weights of 4-year-olds is at least 8.3 pounds. 
 
 

 
3) The variance of the ages of Mendocino College is at most 4 (years squared). 

 
 
 

4) The standard deviation of the daily high temperatures in July in Ukiah is less 
than 3oC. 
 

 
5) The standard deviation of the volumes of coffee in cups from an automatic 

machine is not less than 0.9 fluid ounces. 

 
6) The variance of the size of boxes in a staff supply room is not more than 12.3 

(cubic inches squared). 

 
 

7) The standard deviation of the speeds of cars at a certain intersection is less 
than 6.5 mph. 

 
 

8) The standard deviation of the time spent on a Statistic exam is at least 12.3 
minutes. 

 
 
 
9) The standard deviation of the width of mobile homes in a certain park exceeds 

2.7 ft. 
 
 
10)  The variance of prices of plays in a certain city is not less than 6.75 (dollars 

squared). 
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Worksheet #29: Computing 𝝌𝝌𝟐𝟐 Test Values  
 
Find the 𝝌𝝌𝟐𝟐 test value to the nearest thousandth. 

1) The standard deviation of heights of 4-year-olds exceeds 4.1 inches. 
A sample of 29 4-year-olds has a standard deviation of 5.7 inches. 
 

2) The standard deviation of weights of 4-year-olds is at least 8.3 pounds. 
A sample of 14 4-year-olds has a standard deviation of 6.7 pounds. 
 

3) The variance of the ages of Mendocino College students is at most 4 (years 
squared). 
A sample of 72 Mendocino College students has a standard deviation of 2.7 years. 

 
4) The standard deviation of the daily high temperatures in July in Ukiah is less than 

3oC.   
A sample of 132 such temperatures had a standard deviation of 1.8 oC. 
 

5) The standard deviation of the volumes of coffee in cups from an automatic 
machine is not less than 0.9 fluid ounces.   
A sample of 17 such volumes had a standard deviation of 1.1 fluid ounces. 

 
6) The variance of the size of boxes in a staff supply room is not more than 12.3 

(cubic inches squared). 
𝑛𝑛 = 41 
𝑠𝑠 = 3.9 

 
7) The standard deviation of the speeds of cars at a certain intersection is less than 6.5 

mph. 
𝑛𝑛 = 84 
𝑠𝑠 = 5.9 mph 

 
8) The standard deviation of the time spent on a Statistic exam is at least 12.3 

minutes. 
𝑛𝑛 = 22 
𝑠𝑠 = 10.1 minutes 

 
9) The standard deviation of the width of mobile homes in a certain park exceeds 2.7 

ft. 
𝑛𝑛 = 50 
𝑠𝑠 = 3.4 ft 
 

10) The variance of prices of plays in a certain city is not less than 6.75 (dollars 
squared). 
𝑛𝑛 = 37 
𝑠𝑠 = 2.31 
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Worksheet #30: Finding P-Values in Tests of Claims about the 
Standard Deviation 
 
Find the p-values to the nearest thousandth for these claims, given the 𝜒𝜒2 Test Value. 
Draw a diagram for each problem. 
 

1) The standard deviation of heights of 4-year-olds exceeds 4.1 inches. 
𝜒𝜒2 = 54.118       𝑛𝑛 = 29 
 

2) The standard deviation of weights of 4-year-olds is at least 8.3 pounds. 
𝜒𝜒2 = 8.471          𝑛𝑛 = 14 
 

3) The variance of the ages of Mendocino College is at most 4 (years squared). 
𝜒𝜒2 = 129.398      𝑛𝑛 = 72 
 

4) The standard deviation of the daily high temperatures in July in Ukiah is less 
than 3oC. 
𝜒𝜒2 = 47.160        𝑛𝑛 = 132 
 

5) The standard deviation of the volumes of coffee in cups from an automatic 
machine is not less than 0.9 fluid ounces. 
𝜒𝜒2 = 23.901        𝑛𝑛 = 17 
 

6) The variance of the size of boxes in a staff supply room is not more than 12.3 
(cubic inches squared). 
𝜒𝜒2 = 49.463        𝑛𝑛 = 41 
 

7) The standard deviation of the speeds of cars at a certain intersection is less 
than 6.5 mph. 
𝜒𝜒2 = 68.384        𝑛𝑛 = 84 
 

8) The standard deviation of the time spent on a Statistic exam is at least 12.3 
minutes. 
𝜒𝜒2 = 14.160        𝑛𝑛 = 22 
 

9) The standard deviation of the width of mobile homes in a certain park exceeds 
2.7 ft. 
𝜒𝜒2 = 77.701        𝑛𝑛 = 50 
 

10) The variance of prices of plays in a certain city is not less than 6.75 (dollars 
squared). 
𝜒𝜒2 = 28.459        𝑛𝑛 = 37 
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Worksheet #31: Summarizing the Results in Tests of Claims 
about the Standard Deviation – Lecture 18 
Choose from is/isn’t and support/reject in each problem. 
 

1) The standard deviation of heights of 4-year-olds exceeds 4.1 inches. 
The significance level is 1%, and the p-value is 0.002. 
 

2) The standard deviation of weights of 4-year-olds is at least 8.3 pounds. 
The significance level is 10%, and the p-value is 0.188. 
 

3) The variance of the ages of Mendocino College is at most 4 (years squared). 
The significance level is 5%, and the p-value is 0.000+. 
 

4) The standard deviation of the daily high temperatures in July in Ukiah is less 
than 3oC. 
The significance level is 1%, and the p-value is 0.000+. 
 

5) The standard deviation of the volumes of coffee in cups from an automatic 
machine is not less than 0.9 fluid ounces. 
𝛼𝛼 = 0.10 
p-value = 0.092 
 

6) The variance of the size of boxes in a staff supply room is not more than 12.3 
(cubic inches squared). 
𝛼𝛼 = 0.05 
p-value = 0.145 
 

7) The standard deviation of the speeds of cars at a certain intersection is less 
than 6.5 mph. 
𝛼𝛼 = 0.01 
p-value = 0.124 
 

8) The standard deviation of the time spent on a Statistic exam is at least 12.3 
minutes. 
𝛼𝛼 = 0.10 
p-value = 0.137 
 

9) The standard deviation of the width of mobile homes in a certain park exceeds 
2.7 ft. 
𝛼𝛼 = 0.01 
p-value = 0.006 
 

10) The variance of prices of plays in a certain city is not less than 6.75 (dollars 
squared). 
𝛼𝛼 = 0.05 
p-value = 0.190 



181 

Lecture #19:  Testing Claims about Two Populations 
 
 In practice, instead of making and testing a claim about one parameter, based on 
one sample, you might want to consider two samples, and test a claim about the 
difference in the value of the parameters of the populations from which the two samples 
are drawn.  You might want to claim that Mendocino College men are taller than 
Mendocino College women, or that they are at least 4 inches taller on the average, instead 
of claiming that Mendocino College women average a certain height, or that Mendocino 
College students as a whole average more than a certain height.  Or you might want to 
claim that Mendocino College women are more likely to be local high school graduates 
than Mendocino College men. 
 
 This lecture is about situations in which testing the claim involves using statistics 
from two samples to make inferences about the parameters of the populations the samples 
come from. 
 
Claims about the Difference of Means 
 
 First, let me define the concept of independent samples.  These are samples in 
which there’s no way to pair the numbers in one sample with the ones in the other sample 
For instance, in the following claim, there are two groups, males and females, and they 
are independent of each other.   
 
 The other situation is dependent samples, in which the two samples have a 
natural pairing.  For example, if you were measuring reaction time for people before they 
drink several beers and afterwards, you can directly compare the two numbers for each 
person.  People naturally have different reaction times, and it makes more sense to look at 
the differences in individuals’ reaction times before and after than to look at the average 
before and the average after.  (We won’t cover dependent samples in this course.) 
 

We’ll confine ourselves to claims that one mean is bigger than, smaller than, or 
different from another mean.     

 
 Here’s a claim:  The average Mendocino College male student wears shoes of a 
larger size than the average Mendocino College female student.   
 
 We need some notation.  Let’s call 𝜇𝜇𝑀𝑀 the population mean shoe size for the men, 
and 𝜇𝜇𝐹𝐹 the population mean shoe size for the women.  Then our claim translates as 𝜇𝜇𝑀𝑀 >
𝜇𝜇𝐹𝐹.   
 
 We’ll alter the instructions about testing claims a little to eliminate the diagram – 
the situation has gotten somewhat more complicated. 
 
 STEPS IN TESTING CLAIMS 

A) State the hypotheses and identify the claim. 
B) Perform the test using the sample data or statistics, and state the p-value.  
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C) Decide whether or not to reject the null hypothesis. 
D) Summarize the results. 

 
 This table shows the means, standard deviations, and sample sizes for shoe size 
for the males and the females in the Class Data Base: 
 

  
Shoe 
Size 

Males 

Mean 10.483 
Standard 
Deviation 1.760 

Sample Size 29 

Females 
Mean 7.947 
Standard 
Deviation 1.427 

 
Sample Size 47 

  
 Step A should be familiar: 

  
𝐻𝐻0: 𝜇𝜇𝑀𝑀 ≤ 𝜇𝜇𝐹𝐹  
  
𝐻𝐻1: 𝜇𝜇𝑀𝑀 > 𝜇𝜇𝐹𝐹 (Claim) 

 
 To perform Step B, we’ll use a test called 2-SampTTest, calling the males Group 
1 and the females Group 2: 
 

 
 
There’s more input than fits on one screen, so here’s the rest.  Ignore the overlap: 
 

 
 
When we opt to calculate, the calculator gives us these results: 
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There’s more information below, but what we really want here is the p-value, which is 
very, very small – a decimal point followed by 9 zeros and an 8.  This certainly qualifies 
as +000.0  and is smaller than any imaginable α. 
 
 Step C:  Reject 𝐻𝐻0. 
 
 Step D:  Lower-left rectangle:  There is sufficient evidence to support the claim 
that the average Mendocino College male student wears shoes of a larger size than the 
average Mendocino College female student.  It’s pretty much a sure thing. 
 
 What does pooled mean, you might ask?  Well, in the formula for computing the 
p-value for claims about the means of two populations, it makes a difference if you can 
say that the standard deviations of the two populations are the same or not.  If you can 
say they’re the same, you can pool them; if not, you can’t.   
 
 
The F-Distribution 
 
To pool or not to pool:  How do you decide?  To answer that question, we have to 
introduce the last of the four great distributions of statistics, joining the z, the t, and the  
𝜒𝜒2.  The F-distribution is the pdf that results when you take two 𝜒𝜒2-distributions and 
divide them.  It’s the ratio of two non-negative quantities and thus itself can never be 
negative.  In that, its pdf looks rather like the 𝜒𝜒2 pdf, and it shares with the 𝜒𝜒2 also its 
asymmetry.  But the F has two degrees of freedom – one for the numerator, and one for 
the denominator – because each part of the ratio, being a 𝜒𝜒2, has its own number of 
degrees of freedom.   

 
Here’s an F pdf with 5 numerator degrees of freedom and 3 denominator degrees 

of freedom: 
 

 
  



184 

 Here’s another, with 24 numerator degrees of freedom and 14 denominator 
degrees of freedom: 

 
 
Unlike the 𝜒𝜒2, in which the hump keeps moving to the right as the number of degrees of 
freedom increases, the F’s hump gets closer and closer to an F-value of 1 (which 
expresses the situation in which the numerator and denominator are equal to each other). 
 
 If for any reason you wanted to test a claim about the standard deviations of two 
populations, you’d have to use the F-distribution and state the claim in terms of the ratios 
of the standard deviations instead of their differences.  For instance, if you want to claim 

that the standard deviations are equal, you’d claim that 1
2

1 =
σ
σ

. 

 We’re going to use this test only to establish whether the standard deviations are 
equal or not so we know whether to pool them.  Let’s go back to our claim about shoe 
sizes and perform first the 2-SampFTest so we can decide about pooling: 
 

 
 
Notice that we opted for 𝜎𝜎1 ≠ 𝜎𝜎2, which is equivalent to the alternative hypothesis for  

1
2

1 =
σ
σ

, or 𝜎𝜎1 = 𝜎𝜎2.  Here’s the result of the test: 

 

 
The p-value of 0.203 means we should definitely pool, because we can’t say that the 
population standard deviations aren’t the same. 
 



185 

 (If we had chosen not to pool the standard deviations, the p-value would have 
turned out to be 2 × 10-8, hardly different from what we got when we pooled and not 
worth making a fuss about.) 
 
Second Claim 
 
 So let’s cut to the chase and use the t-distribution with pooling in testing a new 
claim:  Mendocino College men are younger than Mendocino College women on 
average.  Let α= 0.10.  As you can see from the table, the mean age of the men in the 
Class Data Base is smaller than the mean age of the women, but is this enough to infer 
that the difference would hold up for the population? 
 

  Age 

Males 

Mean 22.517 
Standard 
Deviation 7.313 

Sample Size  29 

Females 
Mean 25.957 
Standard 
Deviation 11.014 

 
Sample Size 47 

 
 In Step A, I’m still calling the men Group 1 and the women Group 2 for the 
purposes of the calculator: 
 

 
𝐻𝐻0: 𝜇𝜇𝑀𝑀 ≥ 𝜇𝜇𝐹𝐹 

 𝐻𝐻1: 𝜇𝜇𝑀𝑀 < 𝜇𝜇𝐹𝐹  (Claim) 
 
 Here are the screens for Step B: 
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with the result 

 
The p-value is 0.070, which is less than α, so we reject the null hypothesis (Step 3), and 
we conclude that there is sufficient evidence to support the claim that Mendocino 
College men are younger than Mendocino College women on average.   
 
 
Claims about the Difference of Proportions 
 
 What if you want to make a claim about the relative size of two population 
proportions, p, based on the sample proportions, �̂�𝑝, of samples from the populations?  
Here the math is much simpler, involving only the z-distribution. 
 
 Here’s a claim:  Mendocino College men are more likely to pick blue as their 
favorite color than Mendocino College women.  (The protocol will be that any color 
name containing the word “blue” will be considered as blue.) We’ll let 𝑝𝑝𝑀𝑀 represent the 
proportion of Mendocino College men who pick blue as their favorite color and 𝑝𝑝𝐹𝐹 
represent the proportion of Mendocino college women who pick blue as their favorite 
color.  Let’s use the 10% significance level.  Here’s Step A: 
 
 𝐻𝐻0: 𝑝𝑝𝑀𝑀 ≤ 𝑝𝑝𝐹𝐹 
 𝐻𝐻1: 𝑝𝑝𝑀𝑀 > 𝑝𝑝𝐹𝐹  (Claim) 
 
Note that we’re using the parameter p instead of the parameter µ , and that when we 
refer to the likelihood of choosing blue, we’re really talking about the proportion of the 
group that chooses blue.   
 
 Consulting the Class Data Base, we find that 8 men chose blue and 8 women 
chose blue. 
 
 We use 2-PropZTest, which is very simple: 
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Upon calculation, we get 

 
It’s easy to see that �̂�𝑝1 is the sample proportion for the men:  8

29
≈ 0.276.  And of course 

�̂�𝑝2 is the sample proportion for the women:  8
47
≈ 0.170.  And also the p-value is 0.136.  

But what is �̂�𝑝?  It’s what we call the pooled p (delightful name).  It’s the sample 
proportion if we lump the men and the women together and figure out the sample 
proportion for the whole group.  The formula is 𝑥𝑥𝑀𝑀+𝑥𝑥𝐹𝐹

𝑛𝑛𝑀𝑀+ 𝑛𝑛𝐹𝐹
= 8+8

29+47
= 16

76
≈ 0.211.  The 

pooled p is used in the formula for computing the p-value.  It seems like we are simply 
drowning in p. 
 
 At any rate, the answer to Step B is that the p-value is 0.136.   
 
 Step C:  Since 0.136 > 0.10 (which was α ), don’t reject 0H . 
 
 Step D:  There isn’t sufficient evidence to support the claim that Mendocino 
College men are more likely to pick blue as their favorite color than Mendocino College 
women.   
 
 Here’s a claim:  Mendocino College men are more likely not to have pets than 
Mendocino College women.  Let α be 0.10. 
 
 We’ll let 𝑝𝑝𝑀𝑀 stand for the population proportion of Mendocino College male 
students who have no pets and 𝑝𝑝𝐹𝐹 stand for the population proportion of Mendocino 
College female students who have no pets. 
 
 Step A:   
 
 𝐻𝐻0: 𝑝𝑝𝑀𝑀 ≤ 𝑝𝑝𝐹𝐹 
 𝐻𝐻1: 𝑝𝑝𝑀𝑀 > 𝑝𝑝𝐹𝐹  (Claim) 
 
This is identical to Step A in the last claim about choosing blue.  Just the interpretation is 
different. 
 
 There are 9 men in the Class Data Base whose number of pets is 0, and there are 
12 women.  2-PropZTest looks like this: 
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with the result  
 

 
(You might notice that here, as in the last test, �̂�𝑝, the pooled p, lies between  
�̂�𝑝𝑀𝑀 (�̂�𝑝1) and �̂�𝑝𝐹𝐹 (�̂�𝑝2), because it is the result of  their merging, and also that it is closer to 
�̂�𝑝𝐹𝐹 because there are more women than men in the Class Data Base.)  The p-value is 
0.301. 

 Step C:  Since 0.301 > 0.10, don’t reject the null hypothesis. 

 Step D:  There isn’t sufficient evidence to support the claim that Mendocino 
College men are more likely not to have pets than Mendocino College women.  
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Exam #3 – Confidence Intervals and Testing Claims – Sample  
                            – Covers Lectures #13-18 
 

For Problems #1 and #2: A survey of 1200 California residents yielded 409 
people who were born in other countries. 

 
1) Find the point estimate of the proportion of all California residents who were born 

in other countries, to the nearest tenth of a percent. 
 

 
2) Find the 95% confidence interval for this proportion to the nearest tenth of a 

percent. 
 

 
 
For Problems #3 and #4: A random sample of 60 mature redwood trees yields a 
sample mean diameter of 135.6 cm and a sample standard deviation of 22.7 cm. 
 
3) Find the 90% confidence interval for the population mean diameter, to the nearest 

tenth. 
 

 
 
4) At the 90% confidence level, find the margin of error (also called the maximum 

error) of the estimate of this mean to the nearest tenth. 
 

 
 
5) Suppose you wanted to estimate the proportion of Californians born in other 

countries within 3%, at a 99% level of confidence, and that you have no prior 
knowledge of the sample proportion.  What is the minimum sample size you 
would have to use? 

 
 
6) Using the standard deviation from Problems #3 and #4, find the minimum sample 

size you would have to use to estimate the average diameter of mature redwood 
trees within 5 cm at the 95% confidence level. 

 
 

7) To the nearest hundredth, what is the point estimate for the population mean of 
heights of female college students, if a random sample of seven female college 
students is selected, and their heights are 162.5 cm, 158.3 cm, 182.1 cm, 173.2 
cm, 160.9 cm, 154.5 cm, and 151.3 cm? 
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8) You’re testing the claim that the average guinea pig weighs 1.21 kilograms.  AQ 
1sample of 23 guinea pigs has an average weight of 1.04 kg, with a standard 
deviation of 0.51 kg.  The test has a p-value of 0.124.  Make a diagram showing 
the distribution, the parameter and the statistic.  Shade and label the p-value. 

 
 
 

9) You’re testing the claim that at least 54% of Californians are bilingual.  In a 
sample of 300 randomly selected Californians, 147 were bilingual.  The test has a 
p-value of 0.041.  Make a diagram showing the distribution, the parameter and the 
statistic.  Shade and label the p-value. 

 
 
 
10) What would the null hypothesis be when testing the claim that the average miles 

per gallon of hybrid cars is under 50 miles per gallon? 
 
 
 
11) What would the null hypothesis be when testing the claim that a majority of 

people watch the TV news? 
 

 
12) What would the alternative hypothesis be when testing the claim that the standard 

deviation of scores on a standardized test is 25 points? 
 
 

13) To the nearest thousandth, what is the p-value for a test of the claim that the 
average microwave costs at most $125, if a random sample of 40 microwaves 
yielded a mean cost of $137, with a standard deviation of $26? 

 
 
 

14) To the nearest thousandth, what is the p-value of a test of the claim that the 
average child says his or her first word before the age of 15 months, if a random 
sample of 35 children shows that the average age when they said their first word 
was 13.5 months, and the sample standard deviation is 3.7 months? 

 
 
 

15) To the nearest thousandth, what is the p-value for a test of the claim that at least 
three-fifths of community college students receive some sort of financial aid, if a 
randomly selected sample of 1400 college students yielded 822 who receive 
financial aid? 
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16) To the nearest thousandth, what is the test value for a test of the claim that the 

population standard deviation of lengths of forearms is less than 5.2 cm, if a 
random sample of the lengths of 43 forearms had a standard deviation of 4.7 cm? 

 
 
 

17) In testing the claim 𝜎𝜎 > 10.4, a sample of 12 produces a test value 𝜒𝜒2 = 17.234 
.  What is the p-value of the test, to the nearest thousandth? 

 
 
 

18) If the claim "A majority of American children own at least one videogame 
system" is tested at the 1% significance level, and the test turns out to have a p-
value of 0.027, what is the final conclusion?  (In other words, summarize the 
results.) 

 
 

19) If the claim "The average cat weighs less than 3.2 kg" is tested at the 5% 
significance level, and the p-value of the test turns out to be 0.042, what is the 
final conclusion?  (In other words, summarize the results.) 

 
 
20) If the claim "The standard deviation of the weights of cats is at most 1.5 kg" is 

tested at the 5% significance level, and the p-value of the test turns out to be 
0.067, what is the final conclusion?  (In other words, summarize the results.



192 

Exam #3 – Confidence Intervals and Testing Claims – Sample   
          Answers 

1) 34.1% 

2) %8.36%4.31 << p  

3) cmcm 5.1407.130 << µ   (t-
interval)     

4) 4.8 cm 

5) 1844 

6) 80 

7) 163.26 cm 

8)  

9)  

 

10) mpg50≥µ  

11) 5.0≤p  

12) pts25≠σ  

13) 0.003  

14) 0.011 

15) 0.163 

16) 34.311 

17) 0.101 

 

18) There is not sufficient evidence 
to support the claim that a 
majority of American children 
own at least one videogame 
system. 

19) There is sufficient evidence to 
support the claim that the 
average cat weighs less than 3.2 
kg. 

20) There is not sufficient evidence 
to reject the claim that the 
standard deviation of the weights 
of cats is at most 1.5 kg.
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Lecture #20:  Correlation and Regression, Part 1 
 
 This lecture and next, we’ll be looking at scatter plots and the inferences you can 
make about them.  There are two topics here:  correlation, which deals with describing 
the relationship between two variables and deciding about its strength, and regression, 
which involves using values of one variable to make predictions about the values of the 
other variable.  
  
 Today I’m going to talk about these concepts in general and for a specific 
example.  Then you’ll generate some data which we will use during the next lecture so 
you can perform correlation and regression analysis on your own. 
 

Let’s say that you have ten people each taking two different medical tests, and 
you have the scores each person got on each of the tests.  Here they are: 

 
Person 

# Test #1 Test #2 
1 45.2 44.4 
2 48.1 52.8 
3 43.8 40.5 
4 52.1 58.9 
5 53.7 57.7 
6 42.6 45.4 
7 44.2 47.2 
8 47.0 52.0 
9 54.4 61.6 

10 50.2 53.0 
  

You’re interested in how the scores for an individual relate to each other, how consistent 
or inconsistent they are, perhaps with a mind to eliminating one of the tests as redundant, 
or perhaps to use people’s scores on one test to predict their scores on the other (maybe 
Test #1 is much cheaper to administer, but what you really want to know is how people 
do on Test #2 – can you get away with giving just Test #1?).   
 

We make a scatter plot using the data, putting the score on Test #1 on the x-axis 
and the score on Test #2 on the y-axis and putting a dot (or some kind of mark) for each 
person.  As before, the variable represented on the x-axis is called the independent 
variable but for the purposes of regression is also referred to as the predictor variable. 
The variable on the y-axis is called the dependent variable or the response variable.   

 
It’s important to remember that designating one variable to be the predictor and 

the other to be the response in no way implies that the value of the predictor variable 
causes the response variable to take on whatever value it has.  That’s pretty obvious in 
the medical test example, where the results of both tests are the consequence of some 
medical condition, and neither causes the other.  The predictor variable might have a 
causal effect on the response variable, but you can’t prove it by demonstrating 
correlation. 
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Here’s the scatter plot: 

. 
 
For instance, Person #1’s marker and numbers are 
 

. 

 So what do we make of this picture?  It’s obvious that although the points are not 
on a single straight line, they are pretty close to one.  They tend to rise from left to right.  
The higher the Test #1 score, in general the higher the Test #2 score.  We call this a 
positive relationship. (If the points tended to fall going from left to right, meaning that 
higher values of one variable tend to go with lower values of the other, we’d have a 
negative relationship.)  If you were to draw the straight line that comes as close as 
possible to the points, it would also go up from left to right, i.e. have a positive slope.   
The line we want is called the least-squares best-fit regression line, among other things, 
and its name reveals what it is that makes it the best fit. 

 
 First let’s see its equation: 𝑦𝑦 = 1.508𝑥𝑥 − 21.216.  The slope, which we label a, is 
1.508, and the y-intercept, referred to as b, is 216.21− .  So the line is of the form 𝑦𝑦 =
𝑎𝑎𝑥𝑥 + 𝑏𝑏.  You can see that a and b are statistics, because they describe a sample, in this 
case the ten pairs of numbers that generated the equation of the regression line.  The 
actual computation of the slope and y-intercept of this line is very complicated, and we let 



195 
 

the calculator produce it for us, but you can understand the condition that it fulfills.  Look 
at how the line fits in with the scatter diagram: 
 

. 
 
 Some of the points are above the line, and some are below.   In this next picture, 
I’ve had the calculator draw in the vertical lines between the points and the regression 
line: 

. 
 
The directed length of the vertical line connecting the point and the regression line is 
called the residual of the point.  It’s negative if the point is below the line, and it’s 
positive if the point is above the line.  If you find all the residuals for a scatter diagram 
and its regression line, square them, and add up the squares, then the least-squares 
regression line is exactly that:  the line with the smallest such sum.  Any other line, if you 
measured the vertical distances from the points to the line, squared them, and summed the 
squares, you would get a larger total than you do for this line. 
 
 This may not seem like such a big deal, but it is the accepted criterion for 
deciding which line is best.  
 

The line’s equation is used for predicting how people will score on Test #2 given 
their score on Test #1.  Going back to the person who got 45.2 on Test #1 and 44.4 on 
Test #2, we can see that this person got a lower than expected score on Test #2 because 
his or her point is below the line, thus having a negative residual.  We would have 
predicted Person #1’s score on Test #2 to be 𝑦𝑦 = 1.508(45.2) − 21.216 ≈ 46.9, not 
44.4.  (This person’s residual would be 5.29.464.44 −=− .) 

 
 The question remains whether we can use the Test #1 result as an accurate enough 
predictor of the Test #2 result that we can dispense altogether with performing Test #2.  
Of course, that depends partially on how closely we have to measure the result of Test #2 
in order for it to be useful.  That in turn would depend on the nature of Test #2 and what 
it is we’re trying to measure.  But another part of the question involves looking at how 
closely the line fits the points, because it would be possible to have a different set of ten 
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points with an almost identical regression line, but this set would contain points much 
further away from the line.  Here’s an example of such a set: 
 

Person 
# 

Test 
#1 

Test 
#2 

1 45.2 38.2 
2 48.1 60.2 
3 43.8 37.3 
4 52.1 65.8 
5 53.7 53.6 
6 42.6 53.6 
7 44.2 53.1 
8 47.0 42.4 
9 54.4 66.1 
10 50.2 48.5 

 
And here is that set graphed along with the first, with the points for the new set marked 
by plus signs.  Also, both its own regression line and the regression line from the 
previous set are shown (they are almost indistinguishable, but you can tell there are two 
lines because of the thickness): 

. 
 
Here the points are still pretty close to the line but definitely not as close as before, yet 
we would make essentially the same predictions about the results of Test #2 based on the 
results of Test #1.  And our predictions would be off by more.   
 
 We need a way of measuring how closely the line fits the points, and for this we 
use the sample correlation coefficient, symbolized by r.  Like a and b, it’s a statistic 
describing our sample.  Its very complicated formula produces a number between 1−  and 

1+ .  In essence, 1−=r  if the points all lie on a straight line with a negative slope, and 
1+=r  if all the points lie on a straight line with a positive slope.  And the closer the 

absolute value of r, r , is to 1 (in other words, the closer r is to either 1−  or 1+ ) the more 
closely the points hug the line, and the better the line is for purposes of prediction.  We 
use LinReg to get both the equation and the correlation coefficient. 
 
 For our original table of results, 938.0=r , and for the altered set pictured above, 

615.0=r .  What does this tell us?  The line is a better fit for the first set than for the 
second, because r is closer to 1 for the first set than for the second.   
 
 If a (the slope of the line) is positive, so is r, and if a is negative, so is r. 
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 Now we’re going to go back to our claims-testing mode. 
 
 Let’s say that we want to be able to use the regression equation we got for our 
first set of test result to make predictions in general about someone’s result on Test #2 on 
the basis of the person’s result on Test #1, and we want to be fairly sure that we are 
justified in doing this.   
 
 If we had the entire population of pairs of results on Test #1 and Test #2, we 
could make a scatter diagram for the population and calculate the equation of the least-
squares regression line and the correlation coefficient.  The correlation coefficient would 
then be a parameter called the population correlation coefficient, labeled ρ , which is 
the Greek ‘r’ and is spelled ‘rho’ and pronounced ‘row’.   

 What we do is to test the claim that the populations represented by scores on Test 
#1 and Test #2 are positively correlated, in other words that ρ  is greater than 0.  We 
could do this by performing what the calculator calls the LinRegTTest, but we’ll take a 
different approach. 

 This approach involves what’s known as a critical value.  You find a number 
that, if your statistic is bigger than it, you can reject the null hypothesis.  We could have 
used this technique in testing claims about other kinds of parameters, but we didn’t 
because we used the p-value method.    

 A table of critical values for r reveals that for eight degrees of freedom (you have 
to deduct one for each variable from the sample size ( 81110 =−− ) the correlation 
coefficient would have to be at least 0.621 for us to conclude at the 5% significance level 
that there is a positive relationship between the two variables.  So our first set                   
( 938.0=r ) gives us the assurance we need that a positive relationships exists, and that 
we can use the regression equation for purposes of predicting a person’s score on Test #2 
from that person’s score on Test #1.   

Thus, if a person had a score of 51.3 on Test #1, we would be justified in 
predicting that the person would have a score of 𝑦𝑦 = 1.508(51.3) − 21.216 ≈ 56.1 on 
Test #2.  (Actually, 56.1, the value of y which the equation would yield, would be only a 
point estimate of the predicted value for a score of 51.3 on Test #1.  In practice we 
would generate a confidence interval for the prediction.  But we aren’t going to cover 
how to do that in this course and will stick to a single predicted value.) 

Using the second set, ( 615.0=r ), we see that r is slightly lower than the critical 
value, so if asked to predict someone’s score on Test #2 from his or her Test #1 score, we 
would act cautiously and just say that our best guess would be the average of the Test #2 
scores and leave it at that.  That would be the mean, which is 51.9. 
  
 Everything we’ve done so far is called linear regression, because we’ve used a 
straight line.  Sometimes a pattern of points is clearly not in the shape of a straight line, 
but there’s a definite shape anyway.  Look at this set of points: 
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. 
 
The x-y pairs that formed this scatter diagram are 
 

X Y 
1 8.0 
2 6.4 
3 4.8 
4 4.6 
5 4.0 
6 4.3 
7 5.2 
8 5.8 
9 6.1 

10 7.9 
 
No straight line could do it justice.  The low and the high values of the x-variable appear 
to yield higher y-values than the middle x’s.  How about fitting a parabola to the data?  
We call this quadratic regression for obvious reasons, and when we do it and graph the 
resulting parabola along with the points we get 
 

. 
 
Quite a good fit!  This kind of relation could occur (though with different numbers than 
the ones I used to create the effect) for something like auto accident rates for drivers 
according to their ages, with the young and the old being involved in a greater proportion 
of accidents than the middle-aged. 
 
 Or how about this one: 
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. 
 
I got this using the following table: 
 

X Y 
1 57.6 
2 71.1 
3 68.8 
4 58.7 
5 40.2 
6 16.4 
7 3.7 
8 5.5 
9 17.6 

10 41.5 
 
The points lie near neither a straight line nor a parabola, but they have a suspiciously 
sinusoidal (the shape of a sine curve) pattern to them.  How about sinusoidal regression? 
The scatter diagram and the sinusoidal regression line look like this: 
 

. 
 
What could possibly create such a pattern?  Anything that depends on the seasons, like 
sales volume of ski equipment or camping gear. 
 
 Here’s another shape that a scatter diagram may take on: 
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It comes from this table: 
 

X Y 
1 3.8 
2 19.9 
3 27.1 
4 34.1 
5 35.2 
6 37.8 
7 43.7 
8 44.1 
9 44.3 

10 46.2 
 
Whereas a straight line isn’t a terrible fit, there’s a better one in a case like this where the 
growth rate is big at first but then slows down: logarithmic regression, in which the y is 
related to the natural log of the x, not to the x itself.  Here’s what it looks like 
 

. 
 
A relation like this might arise when looking at levels of sales for different amounts of 
money spent on advertising – additional advertising dollars have diminishing returns as 
far as promoting sales is concerned.  
 
 Or you could have the sort of relation in which growth accelerates rather than 
slows: 
 

. 
 
The table that produced this scatter diagram is 
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X Y 
1 13.2 
2 18.2 
3 20.3 
4 27.4 
5 31.0 
6 37.2 
7 50.6 
8 58.2 
9 65.7 

10 84.6 
 
This is best served by the exponential regression model, in which y is related to e to 
some power containing x rather than to x itself.  Here’s the regression curve with its 
scatter diagram: 
 

. 
 
An illustration would be unrestrained growth in the size of a vegetable crop or in the 
value of a rare collectible. 
 
 But is growth ever really unrestrained, or unrestrained for very long?  Sooner or 
later the crop has used up its space, its water, its nutrients, or whatever, and there’s a limit 
even to the price that people will pay for a Ty Cobb baseball card.  A more realistic 
growth model, and one that might be lurking just to the right of the scatter plot above, is 
one in which the growth rate levels off and finally approaches zero – the size of the crop 
or the price of the collectible reaches a peak.   
 
 Look at what happens if we extend the table above to reflect this idea: 
 

. 
 
This results from adding the following rows to the table that made the scatter diagram: 
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11 107.1 
12 113.7 
13 116.3 
14 119.9 
15 120.7 

 
This “growth with a cap” analysis is called logistic regression.  Here it is with its scatter 
diagram: 
 

. 
 
 The abrupt change in pattern from the exponential to the logistic growth example 
serves as a warning that applies to all use of regression analysis to make predictions.  If 
you pick a value between the smallest x and the largest x that produced the regression 
equation in the first place and use it to predict y, that’s called interpolation, and it’s a 
legitimate thing to do, assuming the p-value as discussed above is small enough to justify 
claiming there’s a real relationship between the variables.  But if you use the equation to 
make a prediction for an x that is outside the range of the original x’s (a process called 
extrapolation), you are on very shaky ground indeed and should watch your step! 
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Lecture #21:  Correlation and Regression, Part 2 
 
 To give you some practice with the concepts of correlation and regression as 
developed in the last lecture, I’ve selected ten students and placed their heights, forearm 
lengths, and head circumferences in a table which you can copy into the lists on your 
calculator, putting Height in List 1, Forearm in List 2, and Head in List 3. 
  

Person 
# Height Forearm Head 
1 174 43 56 
2 166 44 57 
3 150 39 56 
4 176 48 60 
5 160 42 56 
6 167 45 56 
7 181 47 56 
8 170 42 57 
9 172 45 55 

10 155 40 52 
 
A good way to check that you’ve put in the correct numbers is to find the mean of each 
set and make sure it matches these means:  Height: 167.1 cm, Forearm: 43.5 cm, and 
Head: 56.1 cm.   
 
Finding the Regression Equation and the Sample Correlation Coefficient 
 
 First, using height as the predictor variable and forearm length as the response 
variable, let’s find the equation of the regression line and the value of the sample 
correlation coefficient.  We’ll round all numbers to the nearest thousandth.   
 
 Note that Height is in List 1 and Forearm in List 2.   
 
 Putting in LinReg (ax+b) L1, L2 – naming the predictor variable list first and the 
response variable list second – might yield the following screen: 
 

 
I say “might” because if this is what you got, though it gives the values of a and b in the 
regression equation, it doesn’t tell you the sample correlation coefficient, and you’ll have 
to change the settings on the your calculator.  Push 2nd  0 (CATALOG), cursor down to 
DiagnosticOn, and then press ENTER twice.  That should do it, and now the same 
command – LinReg (ax+b) L1, L2  – should yield  



204 
 

 
 So the regression equation, with a and b rounded to the nearest thousandth, 
becomes 𝑦𝑦 = 0.258𝑥𝑥 + 0.382, and the sample correlation coefficient, r, is 0.868. 
 
 Let’s try another one, this time using head size (List 3) as the predictor variable 
and height as the response variable.  Using LinReg (ax+b) L3, L1, we get 
 

 
 
So the regression equation is 𝑦𝑦 = 2.318𝑥𝑥 + 37.057, and the sample correlation 
coefficient is 472.0=r  to the nearest thousandth. 
 
Prediction 
 
 As I explained in the last lecture, the question of whether we’re justified in using 
the regression equation to predict a value of the response variable for a certain value of 
the predictor variable can be settled by looking at the critical value for r at a given 
significance level and for a given number of degrees of freedom.  The critical value for 
the 5% significance level with 8 degrees of freedom was 0.621.  
 
 So for the purpose of predicting forearm length from height, where r was 0.868, 
we can use the equation, and when we do, we give the y another name – 𝑦𝑦�, pronounced 
y-hat of course, and meaning ‘the predicted value of y’.  Let’s use the equation to predict 
the forearm length of a person of height 179 cm: 
 
 𝑦𝑦� = 0.258𝑥𝑥 + 0.382 = 0.258(179) + 0.382 = 46.564 
 
The forearm length we would predict for a person whose height is 179 cm is 46.6 cm, to 
the nearest tenth of a centimeter. 
 
 What if we were asked to predict the height of a person whose head size is 53 cm?  
Since 472.0=r in this case, less than the critical value, we’ll have to resort to predicting 
that the person, despite his or her head size, would be about average in height, and the 
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mean height of the sample, which we’ll now call y  because height is the y-variable, is 
167.1 cm.  So that’s our prediction. 
 
Residuals 
 
  Once you’re established that two variables have a significant correlation, you can 
go on to see how accurate your prediction of the value of the response variable is in 
individual cases.  Last lecture we defined the residual as the difference between the 
actual value of the response variable and the predicted value based on the regression 
line.  Then I illustrated residuals graphically as the directed lengths of vertical lines on 
the graph, like this: 
 

 
 
 Now we’ll use a formula for the residual for the nth individual.  It’s nn yy ˆ− , where 

ny  is the actual value of the response variable for the nth individual, and nŷ  is the 
predicted value of the response variable for the nth individual. 
 
 In the regression analysis in which height is the predictor variable and forearm 
length is the response variable, what is the residual for Person #2 to the nearest tenth?  
We can ask this question, because we showed that height and forearm length are 
significantly correlated.    
 
 The x-value (height) of Person #2 is 𝑥𝑥2 = 166 cm.  The y-value (forearm length) is 
𝑦𝑦2 = 44 cm.  Using the regression equation 𝑦𝑦� = 0.258𝑥𝑥 + 0.382, we get 𝑦𝑦2� =
0.258(166) + 0.382 = 43.21.  The residual for Person #2 is thus 𝑦𝑦2 − 𝑦𝑦2� = 44 −
43.21 = 0.79, or 0.8 cm to the nearest tenth.  This means that Person #2’s forearms are a 
little under a centimeter longer than we’d expect given his or her height. 
 
 What’s the residual for Person #8?  This person’s height is =8x 170 cm, with 
forearm length 𝑦𝑦8 = 42 cm.  We get the predicted value 𝑦𝑦8� = 0.258(170) + 0.382 =
44.24. So 𝑦𝑦8 − 𝑦𝑦8� = 42 − 44.24 = −2.24 , and Person #8’s residual to the nearest tenth 
is −2.2 cm.  Person #8’s forearms are a little more than 2 centimeters shorter than we’d 
expect given his or her height. 
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Multiple Regression 
 
 Finding and stating the linear regression equation and the sample correlation 
coefficient, making predictions using the equation (or not, if a significant correlation 
cannot be claimed to hold), and finding residuals – these are the tasks we’ve covered.   
Linear regression is just one way of attempting to make sense of the relationship between 
two variables.  We saw some other patterns at the end of the last lecture.   
 
 But in all these cases, linear and otherwise, we’re trying to express the value of 
the response variable in terms of one other variable, the predictor variable.  We call 
comparing two variables in this way a simple relationship, and the prediction equation is 
an example of simple regression.  It’s ‘simple’ because there’s only one predictor 
variable.   
 
 Sometimes, though, it’s a lot better to use more than one predictor variable.  Say 
you’re trying to predict shoe size from height (as you’ll be doing in Assignment #9).  
Height turns out to be a pretty good predictor, but, as you know, some people have large 
feet for their height and some have small feet.  Perhaps the tendency to have large or 
small feet runs in families.  Wouldn’t it be helpful to know the shoe sizes a person’s 
mother and father wear?  You could label the person’s height 𝑥𝑥1, the mother’s shoe size 
𝑥𝑥2, and the father’s shoe size 𝑥𝑥3, and then you could (or at least a computer could) 
construct a prediction equation which would look like this:  𝑦𝑦� = 𝑎𝑎 + 𝑏𝑏1𝑥𝑥1 + 𝑏𝑏2𝑥𝑥2 +
𝑏𝑏3𝑥𝑥3.  The relation between your height and your parents’ shoe sizes on the one hand, 
and your own shoe size on the other is an example of a multiple relationship, and the 
prediction equation involves multiple regression, using more than one predictor 
variable.  The job of the researcher is to find the best predictor variables to use, ones 
which do not overlap and depend upon each other, and which produce the closest fit to 
the data. 
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Activity #21:  Correlation and regression 
 

Person 
# Height Forearm Head 
1 174 43 56 
2 166 44 57 
3 150 39 56 
4 176 48 60 
5 160 42 56 
6 167 45 56 
7 181 47 56 
8 170 42 57 
9 172 45 55 

10 155 40 52 
 

1)  Using forearm length as the independent variable and height as the dependent 
variable, state the equation of the regression line and the value of the sample correlation 
coefficient, to the nearest thousandth. 
 

2)  Using height as the predictor variable and head size as the response variable,  
state the equation of the regression line and the value of the sample correlation 
coefficient, to the nearest thousandth. 
 

In #s 3 and 4, if r > 0.600, use the regression equation to make the prediction.  If r < 
0.600, predict the average for the response variable. 
 
3)  Predict to the nearest tenth the height of a person whose forearm length is 42 cm. 
 
 
4)  Predict to the nearest tenth the head size of a person whose height is 172 cm. 
 
 
5)  In the regression analysis using forearm length as the independent variable and height 
as the dependent variable, find the residual to the nearest tenth for Person # 4. 
 
 
6)  In the regression analysis using forearm length as the predictor variable and height as 
the response variable, find the residual to the nearest tenth for Person # 9.
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Worksheet #32: Finding Linear Regression Equations and 
Sample Correlation Coefficients  
 
For each problem, state the linear regression equation and the sample correlation 
coefficient.  Round all answers to the nearest thousandth. 

1)                                                          2) 

Shoe Size       Height  Weight Forearm Length 
8.5   62   55.2  44.1 
9   69   48.9  46.3 
7   64   63.2  45.8   
10.5   72   68.0  42.6 
9.5   65   50.7  47.2 
12   74   71.6  46.1 
8   64   65.9  41.1 
10   70   78.2  46.8 
6   60   75.0  39.9   
  
7.5   68    
 
 

3)  
 Height above Sea Level  Temperature 
     54     23.2 
    278     22.8 
    566     22.6 
 1,089     19.8 
 3,896     15.4 
 9,890       9.4 
 15,734       6.7     

 
 
4)  
 Temperature Ice Cream Sales    Units:  1) height in inches  
 67   476     2) weight in kg; length in cm  
 52   402                                              
 83   562                                            3)height in feet; temperature                                       
 95   535          in oCelsius  
 47   450          
 90   550                                         4) temperature in oFahrenheit;  
 71   387                                             ice cream sales in dollars 
 78   351 
 39   462    
  



209 
 

Worksheet #33: Making Predictions  
 
Use the results from Worksheet #31 to make the following predictions. Round 
answers to #1-3 to the nearest tenth.  Round answers to #4 to the nearest cent. Use 
0.6 as the cut-off for using the regression equation to make predictions.  (If |𝒓𝒓| ≥
𝟎𝟎.𝟔𝟔, you can use the equation.)  
 
 

1) a)  Predict the height of a person who wears size 6.5 shoes. 
 

            b)  Predict the height of a person who wears size 11 shoes. 
 
 
 
 

2) a)  Predict the forearm length of a person who weighs 53.9 kilograms. 
 

            b)  Predict the forearm length of a person who weighs 74.0 kilograms. 
 
 
 
 

3) a)  Predict the temperature 935 feet above sea level. 

 
b)  Predict the temperature 8,416 above sea level. 

 
 
 
 

4) a)  Predict the ice cream sales when the temperature is 61 oF. 
 
b)  Predict the ice cream sales when the temperature is 87 oF. 
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Worksheet #34: Finding Residuals  
 
Given these tables, calculate the residuals to the nearest tenth for the heights in #1 
and the temperatures in #2. 
 
 

1)                                                          

Shoe Size       Height   
 8.5   62    

9   69    
7   64     
10.5   72  Units:  1) height in inches  
9.5   65   2) height in feet;   
12   74     temperature in oCelsius  
8   64    
10   70    
6   60       
7.5   68  

 
2)  
Height above Sea Level  Temperature 
    54     23.2 
    278     22.8 
    566     22.6 
 1,089     19.8 
 3,896     15.4 

9,890       9.4 
 15,734       6.7 
 

1) Find the residuals for the height of a person who wears a  
a) Size 7 shoe and is 64 inches tall. 
b) Size 9.5 shoe and is 65 inches tall. 
c) Size 8 shoe and is 64 inches tall. 
d) Size 12 shoe and is 74 inches tall. 
e) Size 10.5 shoe and is 72 inches tall. 

 
2) Find the residuals for the temperature at a given altitude if 

a) The temperature at altitude 278 is 22.8 oC. 
b) The temperature at altitude 566 is 22.6 oC. 
c) The temperature at altitude 3,896 is 15.4 oC. 
d) The temperature at altitude 9,890 is 9.4 oC. 
e) The temperature at altitude 15,734 is 6.7 oC. 
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Lecture #22:  Goodness of Fit 
 
 In earlier lectures we covered testing claims about the population proportion, p.  
We were dealing with categorical variables that were binomial, i.e. having only two 
categories.  But what if a variable is categorical but not binomial, if it is multinomial – if 
there are more than two categories and we want to claim certain percentages for the 
proportions for the different categories, or we want to claim that the percentages for the 
proportions for the different categories do not follow a certain pattern?  
 
 In these cases, which are often very interesting situations, we use what’s called a 
goodness-of-fit test.  Here’s an example. 
 
 
Season of Birth 
 
 Are babies born with equal frequency during each of the four seasons, or are 
different fractions of people born in the different seasons?  There are many popular views 
on the subject, and most people would maintain that the fractions of births are different 
for the different seasons.  (People are more likely to be inside and in bed during the long, 
cold nights of winter, so nine months later....) 
 
 
 So let’s claim that the fractions of births in the four seasons are not all the same.  
This would be the alternative hypothesis, 𝐻𝐻1.  To see this, look at what the opposite of the 
claim would be.  Let 𝑝𝑝𝑆𝑆𝑆𝑆 be the fraction of people born in the spring, 𝑝𝑝𝑆𝑆𝑆𝑆 the summer, 𝑝𝑝𝐹𝐹 
the fall, and 𝑝𝑝𝑊𝑊 the winter.  To say that the fractions are the same would be 𝑝𝑝𝑆𝑆𝑆𝑆 = 𝑝𝑝𝑆𝑆𝑆𝑆 =
𝑝𝑝𝐹𝐹 = 𝑝𝑝𝑊𝑊, and of course that fraction would have to be 1

4
.  The complete statement would 

be 𝑝𝑝𝑆𝑆𝑆𝑆 = 𝑝𝑝𝑆𝑆𝑆𝑆 = 𝑝𝑝𝐹𝐹 = 𝑝𝑝𝑊𝑊 = 1
4
.  It contains the condition of equality, several times over, 

and is thus the null hypothesis, 𝐻𝐻0.  So our claim, that not all the p’s are equal to 1
4
, has to 

be 𝐻𝐻1. 
 
 
 We state the hypotheses and identify the claim: 
 
 𝐻𝐻0:  The same fraction of people is born during each season.    
         (𝑝𝑝𝑆𝑆𝑆𝑆 = 𝑝𝑝𝑆𝑆𝑆𝑆 = 𝑝𝑝𝐹𝐹 = 𝑝𝑝𝑊𝑊 = 1

4
) 

𝐻𝐻1:  The fractions of birth during the four seasons are not all the same. (Claim) 
 
 
 There are many ways of stating these hypotheses.  We don’t want to say that each 
fraction is different from 1

4
, because it could be that two of the seasons each have one-

fourth of the births, but the other two don’t.  Don’t worry too much about stating the 
hypotheses; just make sure that the claim winds up in the right place. 
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Now we collect some data.  Spring starts with the vernal (spring) equinox on 

March 20; Summer begins on June 21, the summer solstice; Fall starts on the autumnal 
equinox, which is Sept. 22, and Winter begins on Dec. 21, the winter solstice.  
  
 
 For our analysis to be valid, we must expect at least five people to be born in each 
season if the null hypothesis is true.  Since the null hypothesis states that the fraction of 
births in each season is 1

4
, that means we have to have at least 2054 =⋅  people in our 

survey. 
 
 
 Here are the results of a class survey: 
 
 

SEASON OF 
BIRTH FREQUENCY 

Spring 8 
Summer 6 

Fall 12 
Winter 7 

 
 
As we suspected, Fall had the most births (the highest frequency).  But are the numbers 
unbalanced enough to support our claim that for the population as a whole the fractions 
are different?  After all, there were only 33 people in our sample. 
 
 
 To find out, we do a goodness-of-fit test.  This is a lovely name, because it asks 
how good a fit the fractions in the null hypothesis are to the actual fractions we get from 
our sample. 
 
 
 First, we re-label “Frequency” as “Observed Frequency”, or simply “O”, 
because these are the frequencies which we observed when we did the survey.  We want 
to use another term, “Expected Frequency”, or “E” for the frequency we would expect 
to get if the null hypothesis (that all the fractions are 1

4
)  were true.  We find these 

expected frequencies by multiplying the p for each category (1
4
 in this case) by the sample 

size n (33 in this case).  Here’s the augmented table: 
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SEASON OF 
BIRTH 

OBSERVED 
FREQUENCY 

O 
p from Null 
Hypothesis 

EXPECTED 
FREQUENCY 

E                    
( = p x n) 

Spring 8 0.25 8.25 
Summer 6 0.25 8.25 

Fall 12 0.25 8.25 
Winter 7 0.25 8.25 

 n=33   
 
It’s very true that you can’t have 8.25 people born in a season, but don’t round the 
expected frequencies to whole numbers, because that would throw off the calculations.  If 
you have to round them, make it to the nearest thousandth unless told to do otherwise.  
The expected frequencies have to add up to n, except if rounding affects the sum slightly.  
This makes for a good check. 
 
 We’re working up to a 𝜒𝜒2 here, and the next step is to calculate for each category 
what is called the chi-squared contribution.  It has a formula with which you’ll become 

very familiar:   
( )

E
EO 2−

.   

 
 Take the difference between the observed and the expected frequencies for a 
category, square that difference, and divide by the expected frequency.  For Spring, it 

would be 
( ) ( ) 008.0

25.8
25.88 22

≈
−

=
−
E

EO
.   

 

 Here’s the table with the 
( )

E
EO 2−

 column filled in: 

 

SEASON OF 
BIRTH 

OBSERVED 
FREQUENCY 

O 
p from Null 
Hypothesis 

EXPECTED 
FREQUENCY 

E                    
( = p x n) 

(O - E)2/ E 

Spring 8 0.25 8.25 0.008 
Summer 6 0.25 8.25 0.614 

Fall 12 0.25 8.25 1.705 
Winter 7 0.25 8.25 0.189 

 n=33    
 
 

There’s one last step with the table – add up the  𝜒𝜒2 contributions and get 
( )

E
EO 2−

Σ : 
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SEASON OF 
BIRTH 

OBSERVED 
FREQUENCY 

O 
p from Null 
Hypothesis 

EXPECTED 
FREQUENCY 

E                    
( = p x n) 

(O - E)2/ E 

Spring 8 0.25 8.25 0.008 
Summer 6 0.25 8.25 0.614 

Fall 12 0.25 8.25 1.705 
Winter 7 0.25 8.25 0.189 

 n=33   2.516 
 
The sum, 𝜒𝜒2 = 2.516, is the test value for the goodness-of-fit test.  We use it to find the 
likelihood that, if the null hypothesis were true, a group of 33 would produce frequencies 
as different from the expected, or even more different, as our group did.   
 
 Goodness-of-fit tests are almost always right-tailed (later you’ll read an example 
of one that isn’t).  This is because if, say, the observed frequencies were exactly the same 

as the expected, EO −  would be zero, as would ( )2EO −  and 
( )

E
EO 2−

 and 
( )

E
EO 2−

Σ .  

The more different the observed frequencies are from the expected, the bigger the 
( )

E
EO 2

2 −
Σ=χ . 

 
 But how many degrees of freedom are there for this 𝜒𝜒2?  If you thought 32, then 
you made a smart mistake, because you concluded from previous 𝜒𝜒2 work that the 
degrees of freedom are one less than the sample size, which was 33.  However, in 
goodness-of-fit tests, the degrees of freedom are one less than the number of categories, 
which we label k.  In this case, with four seasons, 4=k .  So there are three degrees of 
freedom.   
 
 To find the p-value, we use 𝜒𝜒2cdf ( 2.516, 1000, 3 ), which is approximately 
0.472.  Here’s a diagram of the distribution showing the 𝜒𝜒2 test value and the p-value: 
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As you can see, there’s more than enough probability that seasons with equal births 
would produce a sample as unbalanced as ours or even more unbalanced.  We do not 
reject the null hypothesis.  To summarize:  There is not sufficient evidence to support 
the claim that the fractions of birth during the four seasons are not all the same.  We 
failed to make our case.  Let’s ask for more research money so we can collect a larger 
sample! 
 
 
Are the Dice Fair? 
 
 In our last example, the p’s of the null hypothesis were the same for all the 
seasons, so the expected frequencies were all equal.  This doesn’t have to be the case to 
perform a goodness-of-fit test.  To demonstrate this, we go back to an unanswered 
question from the early part of the course:  Are the dice you rolled fair? 
 You rolled two dice and recorded their sum.  Here’s the chart for how the rolls 
could turn out: 
 

  Die #2 
  1 2 3 4 5 6 
 1 1,1 1,2 1,3 1,4 1,5 1,6 
 2 2,1 2,2 2,3 2,4 2,5 2,6 

Die #1 3 3,1 3,2 3,3 3,4 3,5 3,6 
4 4,1 4,2 4,3 4,4 4,5 4,6 

 5 5,1 5,2 5,3 5,4 5,5 5,6 
 6 6,1 6,2 6,3 6,4 6,5 6,6 

 
 
And here’s the chart for the sum which would result from each roll: 
 

  Die #2 
  1 2 3 4 5 6 
 1 2 3 4 5 6 7 
 2 3 4 5 6 7 8 

Die #1 3 4 5 6 7 8 9 
4 5 6 7 8 9 10 

 5 6 7 8 9 10 11 
 6 7 8 9 10 11 12 

 
 
 
From these charts, we deduced that if the dice were fair, the probabilities of getting a 
certain sum (from 2 to 12) are those shown in this table:  
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SUM p 

2 1/36 
3 2/36 
4 3/36 
5 4/36 
6 5/36 
7 6/36 
8 5/36 
9 4/36 
10 3/36 
11 2/36 
12 1/36 

  
 
 Let’s claim that the dice were in fact fair dice, even though they came from the 
dollar store, and test it at the 10% significance level.  This claim will be the null 
hypothesis, because it says that the probability of each sum is equal to the fraction given 
in the table above. 
 
 Here are the hypotheses with the claim labeled: 
 

𝐻𝐻0:  The dice are fair. (The population proportions for the different sums are  
 equal to the ones listed in the table.)  (Claim) 
𝐻𝐻1:  The dice aren’t fair. 

 
 I totaled up your frequencies for the different sums, and we’ll use these numbers 

for the observed frequencies in the table showing O, E, and 
( )

E
EO 2−

.  Here’s how the 

numbers look: 
 

SUM 
OBSERVED 

FREQUENCY 
O 

2 162 
3 395 
4 621 
5 816 
6 1053 
7 1363 
8 1062 
9 901 

10 687 
11 462 
12 271 

 n = 7793 
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Now we’ll put in the expected frequencies.  For instance, the expected frequency for a 
sum of 2 is found by multiplying 1

36 
by 7793, which comes to 216.5, rounded to the 

nearest tenth. 
 

SUM 
OBSERVED 

FREQUENCY 
O 

p from Null 
Hypothesis 

EXPECTED 
FREQUENCY 

E                    
( = p x n) 

2 162 1/36 216.5 
3 395 2/36 432.9 
4 621 3/36 649.4 
5 816 4/36 865.9 
6 1053 5/36 1082.4 
7 1363 6/36 1298.8 
8 1062 5/36 1082.4 
9 901 4/36 865.9 

10 687 3/36 649.4 
11 462 2/36 432.9 
12 271 1/36 216.5 

 n = 7793   
 

The next step is to get the 𝜒𝜒2 contribution, 
( )

E
EO 2−

, for each sum, and then to add 

them: 
 

SUM 
OBSERVED 

FREQUENCY 
O 

p from Null 
Hypothesis 

EXPECTED 
FREQUENCY 

E                    
( = p x n) 

(O - E)2/ E 

2 162 1/36 216.5 13.707 
3 395 2/36 432.9 3.326 
4 621 3/36 649.4 1.243 
5 816 4/36 865.9 2.874 
6 1053 5/36 1082.4 0.796 
7 1363 6/36 1298.8 3.170 
8 1062 5/36 1082.4 0.383 
9 901 4/36 865.9 1.424 

10 687 3/36 649.4 2.175 
11 462 2/36 432.9 1.950 
12 271 1/36 216.5 13.735 

 n = 7793   44.784 
 
So the 𝜒𝜒2 test value is 44.784, and there are 10 degrees of freedom ( 101111 =−=−k ).   
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 To find the p-value, we use 𝜒𝜒2cdf ( 44.784, 1000, 10 ), which is 2.4 × 10−6, or 
0.000+.  Here’s a diagram of the distribution showing the 𝜒𝜒2 test value and the p-value: 
 

 
Since the p-value is less than α, we must reject the null hypothesis and say that there is 
sufficient evidence to reject the claim that the dice are fair.  The dice are not fair.   
 
 After rejecting the distribution laid out in the null hypothesis, you can then 
theorize about the ways the actual distribution differs from it.  Looking at the observed 
versus the expected frequencies, we notice that in general we got fewer small sums than 
expected and more large sums.  So the dice appear to favor the sides with more dots on 
them landing up, and those with fewer dots landing on the bottom. (Remember, opposite 
sides add up to 7: 1 and 6, 2 and 5, 3 and 4.)   Because these are cheap dice, the craters 
for the dots are left unfilled, so the sides with more craters are lighter, or less dense, 
whereas those with fewer craters are heavier and hence would tend to land facing down 
while their less dense opposite sides face up.  In a casino, where fair dice are a must, the 
craters are filled with a substance of the same density as the rest of the die but a different 
color, to assure uniform density, and hence fairness. 
 
Left-tailed Goodness-of-Fit Tests 
 
 Let’s say that your instructor gives you a pair of dice and tells you to go home and 
roll them 7,793 times and record the sums.  You decide that’s too much work, and instead 
you’ll make up the observed frequencies.  For guidance, you look at the expected 
frequencies.  Hmmm, for 2 it’s 216.5, so you pick 217.  For 3, it’s 432.9, so you pick 433.  
And so on, until for 12 you subtract the sum of all the other expected frequencies from 

7,793 and put down what’s left.  Your 
( )

E
EO 2−

’s are all going to be very small, and if 

you find 𝜒𝜒2cdf ( 0, 
( )

E
EO 2−

Σ , 10 ), it will yield a very small p-value indeed.  Your 

“observed” frequencies were just too close to the expected frequencies to be believable.  
It will be obvious that you made them up.  So if you are going to cheat, make the 
“observeds” a little more different from the “expecteds.” 
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 A famous example of this occurred in the researches of geneticist Gregor Mendel, 
who studied the genetics of pea plants, and in doing so produced a sample with observed 
frequencies of the traits he was assessing which were far too close to his hypothesized 3-
to-l ratio to be believable, in the same way that the made-up dice sums above were.  
However, Mendel’s experiments have been repeatedly replicated and have supported his 
theories.  One explanation is that he found the 3-to-1 ratio in an early, small-sample 
study, and that he kept going until he had a large sample that confirmed the ratio, a 
situation called confirmation bias.  There are other theories as well, but nobody is 
accusing Mendel of cheating.
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Activity #22:  Goodness of fit 
 
The manufacturers of M&Ms claim that the six colors of M&Ms occur in the following 
proportions: Blue 24%, Orange 20%, Green 16%, Yellow 14%, Red 13%, and Brown 
13%.  Use your sample to perform a goodness-of-fit test on this claim.  Let 05.0=α . 
 

a) State the hypotheses (and identify the claim), 

b) Fill in the chart for O, E, and O − E( )2

E
,  and make a diagram showing the 

𝜒𝜒2 test value and the p-value (to the nearest thousandth), 
c) State your decision whether to reject H0 , and 
d) Summarize the results. 

 
a) 𝐻𝐻0:  The color distribution of M&Ms is as described. (Claim)  

(𝑝𝑝𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 24%, 𝑝𝑝𝑜𝑜𝑜𝑜𝑎𝑎𝑛𝑛𝑜𝑜𝑏𝑏 = 20%, 𝑝𝑝𝑜𝑜𝑜𝑜𝑏𝑏𝑏𝑏𝑛𝑛 = 16%, 𝑝𝑝𝑦𝑦𝑏𝑏𝑏𝑏𝑏𝑏𝑜𝑜𝑦𝑦 = 14%, 𝑝𝑝𝑜𝑜𝑏𝑏𝑟𝑟 = 13%, , 𝑝𝑝𝑏𝑏𝑜𝑜𝑜𝑜𝑦𝑦𝑛𝑛 =
13%) 

 
   𝐻𝐻1:  The color distribution is M&Ms is not as described. 
 
b) 

Color Observed F 
O 

p Expected F 
E = p x n 

( )
E

EO 2−
 

Blue  0.24   
Orange  0.20   
Green  0.16   
Yellow  0.14   

Red  0.13   
Brown  0.13   

   ==∑ nO     
( )

E
EO 2

2 −
∑=χ = 

 
 
 
 
 
 
c) 
 
 
d)
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Worksheet #35: Stating Hypotheses in Goodness-of-Fit Tests  
 
State the hypotheses and identify the claim. 
 

1) A movie theater manager claims that 25% of moviegoers attend a film on 
Saturday, 20% on Friday, 15% on Sunday, and 10% each of the other four days.  

 
 
 
 

2) A researcher claims that employees are equally likely to call in sick on any 
weekday. 

 
 
 
 

3) A shopkeeper claims that customers have a preference in buying baseball caps.  
The ones being tracked are the Giants, the A’s, the Dodgers, the Angels, the 
Padres, and the Rockies. 

 
 
 
 

4) The Mars Company claims that 24% of its M&Ms are blue, 20% orange, 16% 
green, 14% yellow, and 13% each red and brown. 
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Worksheet #36: Finding Expected Frequencies in Goodness-of-
Fit Tests  
 
Find the expected frequencies in each of these goodness-of-fit tests. 
 
 

1) A movie theater manager claims that 25% of moviegoers attend a film on 
Saturday, 20% on Friday, 15% on Sunday, and 10% each of the other four days. 
A sample of 400 moviegoers showed that on a Monday there were 32, on Tuesday 
41, on Wednesday 57, on Thursday 60, on Friday 63, on Saturday 116, and on 
Sunday 31.  

 
 
 
 

2) A researcher claims that employees are equally likely to call in sick on any 
weekday.  One week 76 called in sick on Monday, 67 on Tuesday, 49 on 
Wednesday, 50 on Thursday, and 58 on Friday. 

 
 
 
 

3) A shopkeeper claims that customers have a preference in buying baseball caps.  
The ones being tracked are the Giants, the A’s, the Dodgers, the Angels, the 
Padres, and the Rockies.  One month customers purchased the following numbers 
of caps:  Giants 72; A’s 63; Dodgers 12; Angels 19; Padres 45; Rockies 14. 

 
 
 
 

4) The Mars Company claims that 24% of its M&Ms are blue, 20% orange, 16% 
green, 14% yellow, and 13% each red and brown.  A sample of 2500 M&Ms had 
625 blue, 533 orange, 372 green, 369 yellow, 289 red, and 312 brown. 
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Worksheet #37: Finding the 𝝌𝝌𝟐𝟐 Test Values in Goodness-of-Fit 
Tests  
 
Find the   𝝌𝝌𝟐𝟐 test value to the nearest thousandth for each claim. 
 
 

1) A movie theater manager claims that 25% of moviegoers attend a film on 
Saturday, 20% on Friday, 15% on Sunday, and 10% each of the other four days. 
A sample of 400 moviegoers showed that on a Monday there were 32, on Tuesday 
41, on Wednesday 57, on Thursday 60, on Friday 63, on Saturday 116, and on 
Sunday 31.  

 
 
 

2) A researcher claims that employees are equally likely to call in sick on any 
weekday.  One week 76 called in sick on Monday, 67 on Tuesday, 49 on 
Wednesday, 50 on Thursday, and 58 on Friday. 

 
 
 
 

3) A shopkeeper claims that customers have a preference in buying baseball caps.  
The ones being tracked are the Giants, the A’s, the Dodgers, the Angels, the 
Padres, and the Rockies.  One month customers purchased the following numbers 
of caps:  Giants 72; A’s 63; Dodgers 12; Angels 19; Padres 45; Rockies 14. 

 
 
 
 

4) The Mars Company claims that 24% of its M&Ms are blue, 20% orange, 16% 
green, 14% yellow, and 13% each red and brown.  A sample of 2500 M&Ms had 
625 blue, 533 orange, 372 green, 369 yellow, 289 red, and 312 brown. 
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Worksheet #38: Finding P-Values in Goodness-of-Fit Tests  
 
Find the p-value to the nearest thousandth for each of these claims. 
 
 

1) A movie theater manager claims that 25% of moviegoers attend a film on 
Saturday, 20% on Friday, 15% on Sunday, and 10% each of the other four days. 
A sample of 400 moviegoers showed that on a Monday there were 32, on Tuesday 
41, on Wednesday 57, on Thursday 60, on Friday 63, on Saturday 116, and on 
Sunday 31.  

 
 
 

2) A researcher claims that employees are equally likely to call in sick on any 
weekday.  One week 76 called in sick on Monday, 67 on Tuesday, 49 on 
Wednesday, 50 on Thursday, and 58 on Friday. 

 
 
 
 

3) A shopkeeper claims that customers have a preference in buying baseball caps.  
The ones being tracked are the Giants, the A’s, the Dodgers, the Angels, the 
Padres, and the Rockies.  One month customers purchased the following numbers 
of caps:  Giants 72; A’s 63; Dodgers 12; Angels 19; Padres 45; Rockies 14. 

 
 
 
 

4) The Mars Company claims that 24% of its M&Ms are blue, 20% orange, 16% 
green, 14% yellow, and 13% each red and brown.  A sample of 2500 M&Ms had 
625 blue, 533 orange, 372 green, 369 yellow, 289 red, and 312 brown. 
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Worksheet #39: Summarizing the Results of Goodness-of-Fit 
Tests  
 
Choose from is/isn’t and support/reject in each problem.  Let ∝= 𝟎𝟎.𝟎𝟎𝟓𝟓. 
 
 

1) A movie theater manager claims that 25% of moviegoers attend a film on 
Saturday, 20% on Friday, 15% on Sunday, and 10% each of the other four days. 
A sample of 400 moviegoers showed that on a Monday there were 32, on Tuesday 
41, on Wednesday 57, on Thursday 60, on Friday 63, on Saturday 116, and on 
Sunday 31.  

 
 
 

2) A researcher claims that employees are equally likely to call in sick on any 
weekday.  One week 76 called in sick on Monday, 67 on Tuesday, 49 on 
Wednesday, 50 on Thursday, and 58 on Friday. 

 
 
 
 

3) A shopkeeper claims that customers have a preference in buying baseball caps.  
The ones being tracked are the Giants, the A’s, the Dodgers, the Angels, the 
Padres, and the Rockies.  One month customers purchased the following numbers 
of caps:  Giants 72; A’s 63; Dodgers 12; Angels 19; Padres 45; Rockies 14. 

 
 
 
 

4) The Mars Company claims that 24% of its M&Ms are blue, 20% orange, 16% 
green, 14% yellow, and 13% each red and brown.  A sample of 2500 M&Ms had 
625 blue, 533 orange, 372 green, 369 yellow, 289 red, and 312 brown. 
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Lecture #23:  Tests of Independence 
 
 In Lecture #8, while studying probability, we developed a formula for P(A or B), 
the probability that one or both of the two events A and B happens.  The formula was 
P(A or B) = P(A) + P(B) – P(A and B).  Perhaps you wondered then why we didn’t do 
the same for P(A and B).   
 
 In fact, there is a formula for P(A and B), but it’s true only in certain cases, and 
when it is true, we call events A and B independent. The formula is P(A and B) = P(A) 
x P(B).  If they’re not independent, if P(A and B) ≠ P(A) x P(B), we say that they are 
dependent, or related.  Informally, if two events are independent, they have no influence 
over each other.  Whether one takes place or not has no effect on whether the other one 
occurs.  Their probabilities do not interact. 
 
 I’m going to give two examples, one where the events are independent and one 
where they are dependent.   
 
 Here’s the first probability experiment:  I have four pieces of paper in my pocket.  
They’re labeled 1, 2, 3, and 4.  I take one out and look at it, note its number, put it back, 
pick one out again and look at it, and note its number.  I’m as likely to pick any number 
as any other on any turn – i.e., this is classical probability.  (When I put the first number 
back before selecting the second number, so in fact one number could be chosen twice, 
we call that with replacement.)  So the outcome 31 means that first I chose the 3 and 
then I chose the 1.  Here’s the sample space: 
 

  Second Pick 
  1 2 3 4 

First 
Pick 

1 11 12 13 14 
2 21 22 23 24 
3 31 32 33 34 

4 41 42 43 44 

There are 16 outcomes in the sample space, so 𝑛𝑛(𝑆𝑆) = 16.  Let A be the event of picking 
a 3 on the first pick, and let B be the event of picking a 4 on the second pick. 

 What is P(A and B)?  Clearly it’s 
16
1 , because there is precisely one outcome in 

the event A and B: 

 
  Second Pick 
  1 2 3 4 

First 
Pick 

1 11 12 13 14 
2 21 22 23 24 
3 31 32 33 34 
4 41 42 43 44 
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What is P(A)?  It’s  
4
1

16
4
= , since the whole row beginning 31 has 3 picked first: 

 
  Second Pick 
  1 2 3 4 

First 
Pick 

1 11 12 13 14 
2 21 22 23 24 
3 31 32 33 34 
4 41 42 43 44 

How about P(B)?  It’s also 
4
1

16
4
= , since the whole column beginning 14 has 4 picked 

second: 

 
  Second Pick 
  1 2 3 4 

First 
Pick 

1 11 12 13 14 
2 21 22 23 24 
3 31 32 33 34 
4 41 42 43 44 

Putting it all together, P(A and B) = 
16
1  = 

4
1

4
1
×  = P(A) x P(B), and the events A and B 

are independent because they satisfy the equation that defines independence.  Also, you 
can see that they have no influence on each other because the number chosen first is 
eligible to be chosen again. 

Now let’s change the probability experiment slightly.  This time I won’t put the 
first number back before picking the second.  We call this arrangement without 
replacement for obvious reasons.  This means that outcomes like 11, 22, etc., are 
impossible.  The sample space this time is 

 
  Second Pick 
  1 2 3 4 

First 
Pick 

1  12 13 14 
2 21  23 24 
3 31 32  34 
4 41 42 43  

and 𝑛𝑛(𝑆𝑆) = 12 because the outcomes along the main diagonal (upper left to lower right) 
have been eliminated. 
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 Using A and B as we did in the first version of the experiment,  P(A and B) = 
12
1 , 

because there’s still only one outcome in the event A and B, but this time it’s out of a 
total of 12 possible outcomes: 

 
  Second Pick 
  1 2 3 4 

First 
Pick 

1  12 13 14 
2 21  23 24 
3 31 32  34 
4 41 42 43  

Meanwhile, P(A) and P(B) remain 
4
1 .  P(A) = 

4
1

12
3
= , as illustrated below, and so is 

P(B). 

 
  Second Pick 
  1 2 3 4 

First 
Pick 

1  12 13 14 
2 21  23 24 
3 31 32  34 
4 41 42 43  

 So P(A and B) = 
12
1 , but P(A) x P(B) = 

4
1

4
1
×  = 

16
1 .  Now A and B are not independent, 

because the equation for independence isn’t true any more. 

 In the experiment without replacement, what I pick the first time has an effect on 
what I pick the second time.  Another way to say this is that my second pick is 
dependent on my first pick.  An extreme example is that if I pick a 3, say, on the first 
pick, the probability that I pick a 3 on the second pick is 0, not 

4
1 , as it would be if I 

used replacement.   

A Test of Independence 
 In real life, things aren’t as cut-and-dried as they are in classical probability.  
Consider the empirical situation we used earlier in the semester, the contingency table for 
Sex and Number of Pets:  
 
  Number of Pets 
  No Pets 1 or 2 Pets 3 or 4 Pets At Least 5 Pets 

Sex Male 9 10 9 1 
Female 12 23 8 4 
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 Is the pet-owning behavior of men different from that of women, or are sex and 
pet ownership independent?  The frequency patterns look different, but are they different 
enough to say that sex and pet ownership are related, or, to put it another way, that pet 
ownership is dependent upon the sex of the owner?  In answering this question, we’ll 
encounter a lot of familiar concepts like observed and expected frequencies, the 2χ

contribution 
( )

E
EO 2−

, and the usual parts of claims testing, but we’ll also need some 

new concepts.   
  
 Let’s claim that the level of pet ownership is dependent upon the sex of the pet 
owner, and let’s test that claim at the 10% significance level. 
 
 First we’ll state the hypotheses and identify the claim.  If our claim is that pet 
ownership is dependent upon the sex of the owner, which hypothesis is it?  Since the 
definition of the independence of two events is that P(A and B) = P(A) x P(B), and the 
definition of dependence is that P(A and B) ≠ P(A) x P(B), clearly a claim of 
dependence has to be the alternative hypothesis, 𝐻𝐻1. 
 
    𝐻𝐻0:  Sex and pet ownership are independent. 
    𝐻𝐻1:  Sex and pet ownership are related, or pet ownership is dependent upon the 
 sex of the pet owner.  (Claim) 
 
 (Note that to say that one attribute depends on another is not necessarily to say 
that one causes the other.  It might or it might not.  But certainly if there is any causal 
relationship here, it’s the sex of the pet owner that causes the level of pet ownership, not 
vice versa.) 

 Now to make a table showing O, E, and
( )

E
EO 2−

.  This is a familiar process 

from the last lecture, and it turns out to be applicable to tests of independence as well.  
Each cell of the contingency table produces one row of this table.  We could start like 
this: 
 

CELL 
OBSERVED 

FREQUENCY 
O 

Male None 9 
Male 1 or 2 10 
Male 3 or 4 9 

Male at Least 5 1 
Female None 12 
Female 1 or 2 23 
Female 3 or 4 8 

Female at Least 5 4 
 
It doesn’t matter what order we list the cells in. 
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 Now we hit a snag.  If the null hypothesis is true, that sex and pet ownership are 
independent, how do we find the expected frequencies?  This is going to be a long story, 
but at the end there’s a simple little pattern that you’ll follow to get the expected 
frequencies. 
 
 Let’s concentrate on one cell of the contingency table, the females with 3 or 4 
pets.  Call being female event A, and having 3 or 4 pets event B.  If they’re independent, 
then P(A and B) = P(A) x P(B), or P( Female and 3 or 4 Pets) = P( Female) x P( 3 or 4 
Pets).  We covered how to find P( Female) and P( 3 or 4 Pets) in Lecture #8.  First we 
find the row, column and grand totals for the contingency table: 
 
 

  Number of Pets  
  None 1 or 2 3 or 4 At least 5 Sum 

Sex Male 9 10 9 1 29 
Female 12 23 8 4 47 

 Sum 21 33 17 5 76 
 
 
So P( Female) = 47

76
, and P(3 or 4 Pets) = 17

76
, and if the events are independent, their joint 

probability (the and option) is the product of their separate probabilities, so            P( 
Female and 3 or 4 Pets) = 47

76
× 17

76
.  I won’t multiply this out, but I hope you can see that 

if  47
76

× 17
76

 is the probability for that category, then the expected frequency for the 

category is p × n = 47
76

× 17
76

× 76.  (If this seems unclear, imagine that the p for the cell is 

2
1 .  Then the expected frequency would be p × n = 1

2
× 76.) 

 
 As you can see, in 47

76
× 17

76
× 76, one of the 76’s on the bottom would cancel with 

the 76 at the end, and the expression we’d wind up with would be 47×17
76

.  Take a close 
look at this.  It is the product of the row total for the category described in the rows 
and the column total for the category described in the columns, divided by the 
grand total.  So for any cell, to compute its expected frequency, go all the way to the 
right to get the row total, go all the way down to get the column total, multiply those two 
numbers, and then go diagonally down and to the right to the grand total, and, finally, 
divide the product you got by that grand total.  This may sound complicated, but if you 

do it enough it will become second nature.  Here’s the completed O, E, and
( )

E
EO 2−

 

table, including the sum of the 𝜒𝜒2 contributions: 
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CELL 
OBSERVED 

FREQUENCY 
O 

How to Find 
E 

EXPECTED 
FREQUENCY 

E 
(O - E)2/ E 

Male None 9 29 x 21 / 76 8.0 0.1 
Male 1 or 2 10 29 x 33 / 76 12.6 0.5 
Male 3 or 4 9 29 x 17 / 76 6.5 1.0 

Male at Least 5 1 29 x 5 / 76 1.9 0.4 
Female None 12 47 x 21 / 76 13.0 0.1 
Female 1 or 2 23 47 x 33 / 76 20.4 0.3 
Female 3 or 4 8 47 x 17 / 76 10.5 0.6 

Female at Least 5 4 47 x 5 / 76 3.1 0.4 
    3.4 

 
 This is a right-tailed test, for the same reasons explained in the last lecture, but 
before we use 𝜒𝜒2 cdf we have to determine the number of degrees of freedom.  What’s 
that you say?  Seven?  In other words 1−k , or one less than the number of categories?  
Another smart mistake!  You’d be right if this were simply a situation in which eight 
categories are presented, but because of the contingency-table arrangement we are free to 
choose considerably fewer than seven of the eight numbers.   
 
 Let’s start with the contingency table empty but with its various sums as fixed 
numbers: 
 
  Number of Pets  
  None 1 or 2 3 or 4 At least 5 Sum 

Sex Male     29 
Female     47 

 Sum 21 33 17 5 76 
 
 
Surely I can pick 9 for ‘Male None’ (I can pick any number from 0 to 21, for that matter). 
 
 

  Number of Pets  
  None 1 or 2 3 or 4 At least 5 Sum 

Sex Male free: 9    29 
Female     47 

 Sum 21 33 17 5 76 
 

 
“Free” means I was able to choose it.  But I’m not free to pick the 12 for ‘Female None,’ 
because it has to be the number that brings the 9 up to 21. 
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  Number of Pets  
  None 1 or 2 3 or 4 At least 5 Sum 

Sex Male free: 9    29 
Female forced:12    47 

 Sum 21 33 17 5 76 
 
 
I can pick 10 for ‘Male 1 or 2’ and 9 for ‘Male 3 or 4,’ but then my hands are tied for 
‘Female 1 or 2’ and ‘Female 3 or 4.’ 
 

  Number of Pets  
  None 1 or 2 3 or 4 At least 5 Sum 

Sex Male free: 9 free:10 free: 9  29 
Female forced:12    47 

 Sum 21 33 17 5 76 
 
 
When I say that I am free to pick ‘Male 1 or 2’ and ‘Male 3 or 4,’ of course I’m not 
entirely free, because I have to work with the column totals so as not to exceed them, and 
I also have to keep an eye on the row totals so I don’t violate them either.  But I do have 
some choice. 
 
 But now I’m finished.  ‘Male At Least 5’ has to make 9, 10, and 9 add up to 29, 
so it must be 1, and ‘Female At Least 5’ is then determined as all the Female cells were 
after we chose or calculated the Male numbers. 
 

  Number of Pets  
  None 1 or 2 3 or 4 At least 5 Sum 

Sex Male free:9 free:10 free: 9 forced: 1 29 
Female forced:12 forced:23 forced:8 forced: 4 47 

 Sum 21 33 17 5 76 
 
 So there are exactly 3 degrees of freedom in this 𝜒𝜒2 test.  Before we finish the 
test, let’s continue studying the degrees of freedom, because you can see that our method 
of determining their number is a bit cumbersome, to say the least.  There must be a better 
way, and there is.  Let r be the number of rows in a contingency table and c the number 
of columns.  I can fill in all but the last cell in the first row, and I can do that in all but the 
final row, which is a complete wash-out.  So I can fill in all the cells in a contingency 
table that has 1−r  rows and 1−c  columns.  This makes a total of (𝑜𝑜 − 1) × (𝑐𝑐 − 1) cells.  
In other words, d.f. = (𝑜𝑜 − 1) × (𝑐𝑐 − 1).  In our case this comes to (2 − 1) × (4 − 1) =
1 × 3 = 3 degrees of freedom, as we found earlier. 
 
 Just for practice, what if you had a contingency table with 5 rows and 3 columns? 
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You’d have (𝑜𝑜 − 1) × (𝑐𝑐 − 1) = (5 − 1) × (3 − 1) = 4 × 2 = 8
( ) ( ) ( ) ( ) 824131511 =×=−×−=−×− cr  degrees of freedom.  Here’s confirmation: 
 
 

 A B C SUM 
1 Free Free Forced Given 
2 Free Free Forced Given 
3 Free Free Forced Given 
4 Free Free Forced Given 
5 Forced Forced Forced Given 

SUM Given Given Given Given 
 
 Now we can get back to testing our claim that level of pet ownership and sex of 
the pet owner are related.  To find the p-value, we use 𝜒𝜒2cdf (3.4, 1000, 3) ≈ 0.334. 
Here’s a diagram showing the 𝜒𝜒2 test value and the p-value:  
 

 
 Since 0.334 > 0.10, or 𝑝𝑝 > 𝛼𝛼, we don’t reject the null hypothesis.  To 
summarize:  There isn’t sufficient evidence to support the claim that sex and pet 
ownership are related, or that pet ownership is dependent upon the sex of the pet owner. 
 
 



234 
 

Activity #23:  Tests of Independence 
 
Test this claim:  Attitude toward social media is dependent on gender.  
Significance level: 10%. 
 

a) State the hypotheses (and identify the claim), 

b) Fill in the chart for O, E, and O − E( )2

E
, and find 

( )
E

EO 2−
Σ  and the 

p-value. 
c) State your decision whether to reject H0 , and 
d) Summarize the results. 

  

 Here’s the table: 

 
  Attitude toward Social Media 

  Negative Neutral Positive 

Sex Male    
Female    
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Worksheet #40: Finding Expected Frequencies in Tests of 
Independence  
 
For each contingency table, find the expected frequency for each cell to the nearest 
thousandth. 
 

1) Are gender and alcohol preference independent? 
 

 MEN WOMEN 
BEER 72 52 
WINE 45 54 

NEITHER 21 35 
 
 
 
 
 
 
2)  Are age and music preference independent? 
 

 Rap Rock Classical 
15-25 81 73 47 
25-35 68 95 63 
35-45 54 101 76 

 
 
 
 
 
 
3)  Are income and type of pet owned independent? 

 Type of Pet 
Income ($) Dog Bird Horse 
Under 
25,000 318 382 298 

25,000-
59,999 431 395 449 

60,000 and 
Over 254 223 254 
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Worksheet #41: Finding Degrees of Freedom in Tests of 
Independence  
 
How many degrees of freedom does each of these tests of independence have? 
 
 

1) Are gender and alcohol preference independent? 
 

 MEN WOMEN 
BEER 72 52 
WINE 45 54 

NEITHER 21 35 
 
 
 
 

2) Are age and music preference independent? 
 
 

 Rap Rock Classical 
15-25 81 73 47 
25-35 68 95 63 
35-45 54 101 76 

 
 
 
 

3) Are income and type of pet owned independent? 
 

 Type of Pet 
Income ($) Dog Bird Horse 
Under 
25,000 318 382 298 

25,000-
59,999 431 395 449 

60,000 and 
Over 254 223 254 
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Lecture #24:  Analysis of Variance 
 
 In previous lectures we’ve covered tests of claims about the population mean µ  
and about the differences in the population means of two populations.  But what if you 
want to test whether there are differences in the population means of more than two 
populations? 
 
 Why don’t we just pair off the various populations and test for differences in 
means for all the pairs?  There’s a problem there.  Say you have four populations you’re 
interested in.  Four populations make 4𝐶𝐶2 = 6 pairs.  So you have to do six tests.  What if 
you’re conducting the tests at the 5% significance level?  Then there’s a 95% chance that 
you won’t make a Type I error on any given test.  But the chance that you won’t make a 
Type I error on any of the tests is (0.95)6 ≈ 0.74, because you have to multiply the 
chance that you don’t make a Type I error on the first test by the chance that you don’t 
make a Type I error on the second test by the ... you get the idea.  The significance level 
for these tests as a group will be 26.074.01 =− , or 26%.  Not what we want – the risk of 
having made a Type I error somewhere is too great. 
 
 To counter this difficulty, a technique called analysis of variance was invented.  
It appeared first in 1918 in a paper by R. A. Fisher, a British statistician and geneticist.  It 
has the nickname ANOVA. 
 
 Here’s an example to give you an idea of the concepts involved.  Let’s say you 
have three different populations, A, B, and C, and you take a sample of size 3 from each 
population.  You’re interested in the population means of these populations.  You’re 
claiming that these population means are not all the same.   
 
 Compare two scenarios, which I call Set 1 and Set 2: 
 Set 1  Set 2 
 A B C  A B C 
 5 10 15  9 14 19 
 10 15 20  10 15 20 
 15 20 25  11 16 21 

 
 In which case would you be more likely to conclude that the population means 
aren’t the same?  If you said Set 2, you have the right idea.   
 
 As you can see, the sample means are the same for Sets 1 and 2: 
 Set 1  Set 2 
 A B C  A B C 
 5 10 15  9 14 19 
 10 15 20  10 15 20 
 15 20 25  11 16 21 
Sample 
Mean 10 15 20  10 15 20 
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However, the numbers in Set 1 are all spread out and overlapping, whereas those in Set 2 
are tightly grouped around the means and make you believe that they might actually 
come from populations with different population means. 
 Here are graphs of the two sets: 

 

 
 The basic idea of analysis of variance is to compare the variability of the sample 
means (which we call the variance between groups) to the variability of the samples 
themselves (which we call the variance within groups).   If the former is large compared 
to the latter, as in Set 2, we feel that there really are differences among the population 
means, but if the variability between groups is not large compared to the variability 
within groups, we’re not going to conclude that there are differences among the 
population means.  In the second case we say that there is too much “noise” to draw a 
conclusion about the differences. 
 
 Let’s use the range (the difference between the largest number and the smallest 
number) as a measure of variability.  For both Set 1 and Set 2, the sample means have a 
range of 10.  That is a measure of the variability between groups.  But for Set 1, the 
variability within the groups, if measured by the range, is 10 (e.g. 515 − ), whereas for 
Set 2, the variability within the groups measured this way is 2 (e.g. 911− ).  So compared 
to the variability within groups, the variability between the groups is much larger (five 
times larger) for Set 2 than it is for Set 1 (where the two are the same). 
 
 The comparison of variance between groups and variance within groups is done 
by using a ratio, so ANOVA winds up using the F-distribution, the last of the four great 
pdf’s we use in statistics.  
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 Here’s the formula for finding the F test value: 
 

( )

( )
( )1

1
1

2

2

2

2

−Σ
−Σ
−
−Σ

==

i

ii

GMii

W

B

n
sn

k
xxn

s
sF  

 
The k you’ve seen before – it’s the number of groups or categories.  If you take the mean 
of all the data, it’s called the grand mean and written  GMx .  The variance between 

groups is 2
Bs , and the variance within groups is 2

Ws .   
 
 Can you see an easier way to calculate ( )1−Σ in ?  You’re adding up one less than 
the sample size for each sample.  Since there are k samples, you’re adding up one less k 
times, so ( ) knni −=−Σ 1 , where n is the total of all the sample sizes. 
 
 The F distribution has two degrees of freedom – one for the numerator and one 
for the denominator.  In the ANOVA formula, the number of degrees of freedom for the 
numerator is 1−k  (the denominator of the numerator), and the number of degrees of 
freedom for the denominator is kn −  or ( )1−Σ in  (the denominator of the denominator).   
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Glossary of Symbols 
Number in parentheses refers to lecture the 
symbol first appears in. 
 

f Frequency (3) 

∑  Sum of; the Greek letter capital 

 sigma (3) 

n Sample size (3) 

N Population size (3) 

n
f  Relative frequency (3)  

x  Sample mean, 
n

x∑
 (4) 

µ  Population mean, 
N

x∑
; Greek letter 

 mu (4) 

s Sample standard deviation, 

 
( )

1

2

−
−∑

n
xx

 (5) 

2s  Sample variance, 
( )

1

2

−
−∑

n
xx

 (5) 

σ  Population standard deviation, 

 
( )

N
x∑ − 2µ

; Greek  letter lower-

 case sigma (5) 

2σ  Population variance, 
( )

N
x∑ − 2µ

 (5) 

Cvar Coefficient of variation, 
x
s  (5)  

𝑄𝑄1   First quartile (6) 

𝑄𝑄3 Third quartile (6) 

IQR  Interquartile range, 13 QQ −  (6) 

𝑃𝑃1 First percentile (6) 

 

z Z-score,  
s

xxz −
=  (6) 

S Sample space  (7) 

( )Sn  Size of sample space S  (7) 

E Event (7) 

φ  Empty set (7) 

( )En  Size of event E  (7) 

rn P  Number of permutations of n things 

 taken r at a time (9) 

! Factorial (9) 

rn C  Number of combinations of n things 

 taken r at a time (9) 

( )EP  Probability of event E, 
( )
( )Sn
En

 (9) 

CL Confidence level (13) 

p Population proportion (14) 

p̂  Sample proportion, 
n
x  (14) 

α  Significance level, Greek lowercase 

  letter alpha (15) 

t t distribution (16) 

df   Degrees of freedom (16) 

2χ  Chi-square (18) 

F F distribution (19) 

r Sample correlation coefficient  (20) 

ρ  Population correlation coefficient; 

 Greek letter rho (20) 

b Sample slope of regression line (20) 

 

 

 

 

 

 



241 
 

 

Greek Alphabet 
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Student Survey 
 
1)   What sex are you (M or F)? 
 
2)   Are you a native of Mendocino or Lake County? 
 
3)   Are you a graduate of (or currently attending) a Mendocino or Lake County high 
school? 
 
4)  What is your favorite color? 
 
5)   What is your zip code? 
 
6)   Which statement best characterizes your attitude towards taking math classes? 
 1) If I never have to take another math class it will be too soon. 

2) I would prefer not to take a math class. 
3) I can take them or leave them. 
4) I enjoy math classes. 
5) I adore taking math; it’s my favorite thing to study. 

 
7)   Which statement best characterizes your attitude towards social media? (Facebook,      
Snapchat, Instagram, Twitter, etc.) 
 1) I never use social media and can’t stand them. 
            2) I seldom use social media. 
            3) I can take them or leave them. 
            4) I enjoy social media. 
            5) I love using social media; I can’t get through the day without them. 

 
8)   If you own a car, what year is it? 
 
9)   What size shoes do you wear? 
 
10)  How old did you turn on your last birthday? 
 
11)  What is your height to the nearest inch? 
 
12)   How many pets do you have
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Appendix A:     Stem-and-Leaf Plots 
 
 

A stem-and-leaf plot is a quick-and-easy way to analyze a quantitative data set if 
each number in the set can easily be split into two parts.  For instance, our age data set 
consists of two-digit numbers.  The tens’ digit becomes the stem, and the ones’ digit the 
leaf: 
 

 
 
 

The stem-and-leaf plot resembles a bar graph, with the frequencies displayed on 
the horizontal axis, but it has the additional feature that the original data set can be 
reconstructed by attaching each leaf to its stem. 
 

Not all quantitative data sets contain numbers which have an obvious stem part 
and leaf part, but if they do, the stem-and-leaf plot is a good way to begin analyzing the 
set. 

 
Activity: Stem-and-Leaf Plots 
 
Make a stem-and-leaf plot for the ages of the current data set.  

STEM

1 8 7 8 8 8 9 9 6 9 8 9 5 8 9 6 8 8 8 8 8 8 6 8 8 9 9 8 8 8 9 7 6 7 9 9

2 7 0 7 1 4 0 1 7 3 0 6 7 1 4 3 0 2 4 6 1 3 8 0 0 6 3 5 5 5 0

3 6 2 3 1

4 6 8 6 0

5 3 2

6 1

LEAF
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Appendix B:  Box-and-Whiskers Plots 
 
 Box-and-whiskers plots are useful when you want to compare performance on 
different tests.  Here is an example in which the results of three different tests appear on 
the same graph: 
 

 
 
The “box,” which is divided into two parts, contains the middle 50% of the data.  The left 
boundary of the box is 𝑄𝑄1, the right 𝑄𝑄3, and the middle the median.  The whiskers extend 
left to the minimum and right to the maximum.  In other words, the box-and-whisker plot 
displays the five-number summary for the set. 
 
 Can you tell that all three of these distributions are skewed to the left?  That’s 
because the left whisker is so much longer than the right whisker.  Each whisker has to 
contain one-fourth of the data set, and the left whiskers span a much greater part of the 
set’s range. 
 
 Here’s the box-and-whiskers plot for the height data in the old data set: 
 

 
 
Can you tell that this set is skewed to the right? 
 
Activity:  Making a box-and-whiskers plot 
 

1) Make a box-and-whiskers plot for the shoe size data in the current data set. 
 

2) Do the same for the age data 
 

3) Do the same for the number of pets data. 
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Appendix C:  Research Project #1 
 
After Lecture #2: 

1) Make a data set in the following manner: 
Pick a number, n, between 5 and 20, go to a library, pick a shelf to start on, and do 
a systematic sample of every nth book, noting its title, the number of pages it has 
and its thickness to the nearest millimeter.  Do not count pages with Roman 
numerals.  Your set should consist of 30 books. 
 

After Lecture #3: 
2) Make grouped frequency distributions for the number of pages and for the 

thickness.  You may select the lower limit of the first class and the class width for 
each distribution. 
 

3) Make a histogram for the number of pages and for the thickness, using the 
grouped frequency distributions you made. 

 
After Lecture #5: 

4) Find the measures of central tendency and variation for the number of pages and 
for the thickness as in Activity # 4 & #5.  You don’t need to use the table method. 

 
After Lecture #6: 

5) Find the limits of outliers for the number of pages and for the thickness, and list 
any outliers. 

 
After Lecture #13: 

6) Generate 99%, 95% and 90% confidence intervals for the number of pages and 
for the thickness. 

 
After Lecture #16: 

7) Make and test two claims about either the number of pages or the thickness.  One 
claim should be about the mean and the other about the proportion. You can 
decide the significance level. 

 
After Lecture #21: 

8) Perform a regression analysis using number of pages as the predictor variable and 
thickness as the response variable.  Record the regression equation and the 
correlation coefficient, rounding all numbers to the nearest thousandth.   
 

9) If the cut-off for using the regression equation to predict width from number of 
pages is 𝑜𝑜 > 0.4, predict to the nearest millimeter the width of 
a) A book with 187 pages 
b) A book with 458 pages 
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Appendix D:  Research Project #2 
 
After Lecture #2: 

1) Make up two questions beside the ones in the Student Survey.  One should 
involve a qualitative variable and the other a quantitative variable at a level of 
measurement above the nominal.  Describe your questions using the vocabulary 
of Lecture #2.  State your method of obtaining a sample of at least 30 responses to 
each question. 
 

2) Gather your responses. 
 
After Lecture #3: 

3) For the question involving a qualitative variable, make a categorical frequency 
distribution table, a Pareto chart, and a pie graph. 
 

4) For the question involving a quantitative variable, make a grouped frequency 
distribution table and a histogram.  

 
After Lecture #5: 

5) For your quantitative data set, find the measures of central tendency and variation 
as in Activity # 4 & 5.  You don’t need to use the table method. 
 

After Lecture #6: 
6) Find the limits of outliers for your quantitative data set, and list any outliers. 

 
After Lecture #13: 

7) Generate 99%, 95% and 90% confidence intervals for your quantitative data set. 
 

After Lecture #16: 
8) Make and test a claim about each of your sets.  You can decide the significance 

level. 
 

9) Discuss the process of data collection.  Did you find that you would like to have 
modified the questions in any way?  Were there any awkward moments in 
collecting the data?   
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Appendix E:  Research Project #3 
 

Stop-and-Frisk in New York City 
 

1) A bag will be given to each group of four students. Each student is to take out, randomly, 
without replacement, 20 beads and tally the frequency of each color of bead they receive. 
Replace the beads and let the next student take a random sample of 20 beads and continue 
until each of you has taken a random sample. Use the table below to keep track of your 
work for numbers 1) – 3). 
 

2) Find the percent of each color you selected by dividing the frequency of the color by 20. 

 

3) Combine your samples as a group and find the percentage of each color by dividing the 
frequency of the color by the total (should divide by 80 if you have four in your group). 
 
 

4) If there are 100 beads in the bag, what would you guess would be the number of each 
color in the bag? 

a. Pink:  _______ 
b. Green:  _______ 
c. Blue:  _______ 
d. Orange:  _______ 

 

  Pink Pink% Green 
Green

% Blue Blue% Orange 
Orange

% 
Student 1                 
Student 2                 
Student 3                 
Student 4                 
Total of 
All 
Students                 
 
Stop-and-Frisk is a process by which a police officer may stop, question, and frisk 
anyone on the street without what is known as ‘probable cause’. This policy was used 
extensively in New York City for more than 50 years (http://time.com/4503412/donald-
trump-stop-frisk-history/). 
 
In 2013, a federal judge called ‘Stop-and-Frisk’ indirect racial profiling. Below are the 
data collected between 2003 and 2012, broken down by total stops, number of innocent 
(no warning, ticket, or arrest made) and by number of Black, Latino, and White 
individuals who were stopped and frisked. 
 

http://time.com/4503412/donald-trump-stop-frisk-history/
http://time.com/4503412/donald-trump-stop-frisk-history/
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Year Total Innocent Black Latino White 
2003 160851 140442 77704 44581 17623 
2004 313523 278933 155033 89937 28913 
2005 398191 352348 196570 115088 40713 
2006 506491 457163 267468 147862 53500 
2007 472096 410936 243766 141868 52887 
2008 540302 474387 275588 168475 57650 
2009 581168 510742 310611 180055 53601 
2010 601285 518849 315083 189326 54810 
2011 685724 605328 350743 223740 61805 
2012 532911 473644 284229 165140 50366 
Source: https://www.nyclu.org/en/stop-and-frisk-data 

Find the percentages of Stop-and-Frisk for each of the three groups by dividing the 
number in the group by the total number for 2010, rounding to the nearest tenth: 

e. Black:  _______ 
f. Latino:  _______ 
g. White:  _______ 

5) What can you say when you compare the percentages in 5) to the percentages you found 
in 4) if the following bead colors represent the following groups: 

Pink Bead = Black, Green Bead = Latino, Blue Bead = White, Orange Bead = 
Other 

 
In 2010, the US Census was conducted, and the population of New York City was as 
follows (Source: https://www1.nyc.gov/assets/planning/download/pdf/data-maps/nyc-
population/census2010/pgrhc.pdf): 
Total:  8,175,133 
Black:  1,861,295 
Latino:  2,336,076 
White:  2,722,904 
Racial profiling is defined as the use of race or ethnicity as grounds for suspecting 
someone of having committed an offense. Do you think that the data support the 
possibility that there was some sort of bias that might be described as racial profiling? 

6) Count the number of different colors of beads in your bag.   
a. Does this number seem very different from your guess in 4)? 

7) Find the percentage of the population of each of the groups in NYC in 2010 from the data 
above:  

a. Black:  _______ 
b. Latino:  _______ 
c. White:  _______ 

 
8) Considering the percentage of the population of each group and the percentages of the 

groups that were Stopped-and-Frisked, does it seem plausible that the data support the 
possibility that there was some sort of bias that might be described as racial profiling? If 
so, why? If not, why not? Support your answer. 

https://www.nyclu.org/en/stop-and-frisk-data
https://www1.nyc.gov/assets/planning/download/pdf/data-maps/nyc-population/census2010/pgrhc.pdf
https://www1.nyc.gov/assets/planning/download/pdf/data-maps/nyc-population/census2010/pgrhc.pdf


252 
 

Worksheet #1:  Boundaries 
 
 Lower Boundary  Upper Boundary 
 

1) 32.65 cm   32.75 cm 
 

2) 103.5 mm   104.5 mm 
 

3) 28.05 g    28.15 g 
 

4) 43.815 kg   43.825 kg  
 

5) 3.895 in.   3.905 in. 
 

6) 53.5 sec   54.5 sec 
 

7) 88.885 yds   88.895 yds 
 

8) 1.0745 L   1.0755 L 
 

9) 653.95 oz   654.05 oz 
 

10) 4.6735 lbs   4.6745 lbs 
 
 
Worksheet #2:  Math for Stat 
 

1) −0.86 
 

2) 24.4 
 

3) 63.400 
 

4) 2.881 
 

5) 1,118 
 

6) 541.5 
 

7) 54.33% 
 

8) 69.9 
 

9) 8, 9, 10 
 

10) 0.0007 
 

11) 26.2 
 

12) 8.821 
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Worksheet #3:  Categorical Frequency Distributions and Graphs 
 
1)  Class     Tallies Frequency (f)   Relative Frequency (f/n)   CentralAngle (𝑓𝑓

𝑛𝑛
× 360°) 

      Red       llll lll           8  0.23        82° 
      Blue      llll  llll          10  0.29             103°  
      Teal      ll                          2                       0.06   21° 
      Green   llll llll            9                       0.26   93°   
     Purple   lll                         3                       0.09                             31° 
     Yellow  l                           1                       0.03                             10° 
     Orange  l                           1                       0.03                             10° 
      Black   l                           1                        0.03                             10° 
     n = 35 
 
(The central angle column is not part of the categorical frequency distribution.  It’s 
needed for the pie chart.) 
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Worksheet #4: Grouped Frequency Distributions and Graphs 

 
 
Worksheet #5:  Measures of Central Tendency 
 Mode  Median Mean  Midrange 
 
1)         19, 23   23   31   38 
 
2)  1   3.5   4.5   6 
 
3)  70   71.5   72.2   72.5 
 
4)    --    10   10   10 
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Worksheet #6:  Weighted Means 
 
1)  32.66 g 
 
2)  14.0 cm 
 
3)  111.637 sec 
 
4)  320 toothpicks 
 
5)  7.187 kg 
 
 
Worksheet #7:  Measures of Variation  
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Worksheet #8:  Quartiles, Percentiles, etc. 
 

1) 450 
 

2) 150 
 

3) 300 
 

4) 102 
 

5) 336 
 

6) 174 
 

7) 144 
 

8) 504 
 

9) 378 
 

10) 108 
 

11) 210 
 

12) 1,125 
 

13) 270 
 

14) 765 
 

15) 375 
 

16) 1,020 
 

17) 1,125 
 

18) 600 
 

19) 225 
 

20) 225 

 
 
Worksheet #9:  Outliers 
 
1) −5 years, 59 years; 60 years 
 
2) −8.75 pets, 17.25 pets; no outliers 
 
3) 63 in., 79 in.; 61 in. 
 
4) Size 6, Size 14; Sizes 5, 15 

 
 

Worksheet #10:  Intervals of Data  
 

1) (30.2 yrs, 38.4 yrs) 
 

2) (26.1 yrs, 42.5 yrs) 
 

3) (22.0 yrs, 46.6 yrs) 
 

4) (8.9 ft, 20.7 ft) 
 

5) (3.0 ft, 26.6 ft) 
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6) (−2.9 ft, 32.5 ft) 

 
7) (178.2 g, 291.6 g) 

 
8) (121.5 g, 348.3 g) 

 
9) (64.8 g, 405.0 g) 

 
10) (60.9 min, 95.7 min) 

 
11) (43.5 min, 113.1 min) 

 
12) (26.1 min, 130.5 min) 

 
 

Worksheet # 11:  Standard Scores 
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Worksheet #12:  Sample Spaces 
 
1)  1W   2W   3W   4W   5W 
     1X    2X    3X    4X    5X 
     1Y    2Y    3Y    4Y    5Y 
     1Z    2Z     3Z    4Z     5Z 
 
2) 1 20�  
 
3)  8 20�  
 
4)  3 20�  
 
5)  14

20�  
 

6)  2 20�  
 
7)   11

20�  
 
8)   15

20�  
 
9)  16

20�  
 
10)  8 20�  

 
 
Worksheet #13:  Empirical Probability 
 

1) 64
143�  

 
2) 79

143�  
 

3) 45
143�  

 
4) 46

143�  
 

5) 52
143�  

 
6) 91

143�  
 

7) 21
143�  

 
8) 89

143�  
 

9) 16
143�  

 

10) 108
143�  

 
11) 14

143�  
 

12) 102
143�  

 
13) 29

45�  
 

14) 29
64�  

 
15) 25

79�  
 

16) 25
46�  

 
17) 21

46�  
 

18) 21
64�  
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Worksheet #14:  Classical Probability 
 

1) 4
16�  

 
2) 12

16�  
 

3) 8
16�  

 
4) 4

16�  
 

5) 8
16�  

 
6) 6

16�  
 

7) 6
16�  

 
8) 10

16�  

 
9) 13

16�  
 

10) 1 16�  
 

11) 7 16�  
 

12) 4 16�  
 

13) 12
16�  

 
14) 6 16�  

 
15) 8 16�  
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Worksheet #15:  Counting Rules and Probability 
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Worksheet #16:  Empirical Discrete Probability Distributions 
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Worksheet #17: Normal Distributions – 1  
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Worksheet #18: Normal Distributions – 2  
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Worksheet #19:  Confidence Intervals for the Mean 

 
 
 
 
 



265 
 

Worksheet #20:  Confidence Intervals for the Proportion 
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Worksheet #21: Stating Hypotheses about the Mean 
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Worksheet #22:  Finding P-Values in Tests of Claims about the Mean 
 

 
 
Worksheet #23: Summarizing the Results of Tests about the Mean 
 
1) is/reject 
 
2)  is/reject 
 
3)  is/support 
 
4)  is/reject 
 
5)  is/support 
 
6)  is/reject 
 
7)  is/support 
 
8)  is/reject 
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Worksheet #24: Stating Hypotheses about the Proportion 
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Worksheet #25:  Finding P-Values in Tests about the Proportion 
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Worksheet #26:  Summarizing the Results in Tests about the Proportion 
 

 
Worksheet #27:  Finding Areas under 𝝌𝝌𝟐𝟐 PDFs 
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Worksheet #28: Stating Hypotheses about the Standard Deviation 
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Worksheet #29: Computing 𝝌𝝌𝟐𝟐 Test Values for the Standard Deviation 
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Worksheet #30: Finding P-Values in Tests of the Standard Deviation 
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Worksheet #31:  Summarizing the Results of Standard Deviation Tests 
 

 
 
Worksheet #32:  Finding Linear Regression Equations and r. 
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Worksheet #33:  Making Predictions 
 

 
Worksheet #34:  Finding Residuals 
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Worksheet #35:  Stating Hypotheses in Goodness-of-Fit Tests 
 

 
 
Worksheet #36:  Finding Expected Frequencies in GOF Tests 
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Worksheet #37:  Finding the 𝝌𝝌𝟐𝟐 Test Values in Goodness-of-Fit Tests 
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Worksheet #38:  Finding P-Values in Goodness-of-Fit Tests 
 

 
 
 
Worksheet #39:  Summarizing the Results of Goodness-of-Fit Tests 
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Worksheet #40:  Finding Expected Frequencies in Independence Tests 
 

 
 
Worksheet #41: Finding Degrees of Freedom in Tests of Independence 
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Index 
 
Analysis of variance, ANOVA, 195 
And, 51 
Area under the curve, 79 
Array, 21 
Ascending order, 21 
At least, 57 
At most, 57 
Average, 22 
Bell curve, 87 
Bimodal, 21 
Boundaries, 9  
Box-and-whiskers plot, 206 
Categories, number of, 179 
Census, 11 
Central angle, 17 
Central Limit Theorem, 91 
Chart 
 Pareto, 16 
 pie, 17 
Chi-squared contribution, 178 
Claim, 117 
 as a mathematical sentence, 118 
 reject, 129 
 support, 129  
Class boundaries, 15 
Class width, 15 
Coefficient of variation, 30 
Combinations, 65 
 number of, n items taken r at a 
   time, 65 
Confidence intervals 
 for the mean, 102  
 for the proportion, 111 
 for the predicted value, 165 
Confidence level, 103 
Confirmation bias, 184 
Contingency table, 47 
Control group, 12 
Correlation, 161 
Correlation coefficient, 
 population, ρ , 165 
 sample, r, 164 
Counting rules, 61 
Critical value, 165 

Cut-offs, 87 
 middle, 88 
Data set, 7 
 normally distributed, 38 
Datum, data, 7 
 bivariate, 19 
 raw, 21 
Decile, 
 first, 34 
Degree, 17 
Degrees of freedom, df, 107, 142, 151,         
    179, 192 
Dense, 79 
Descending order, 21 
Deviations from the mean, 29 
 squared, 29 
Diagonal, 
 main, 187 
 minor, 55 
Distribution,   
 chi-squared, 2χ , 142, 178 
 F, 151,196 
 normal, 81 
  standard, 104 
 sampling, 91 
 shape, 25 
 skewed, 26 
  to the left, 26 
  to the right, 26 
 symmetrical, 25 
 t, 106 
 uniform, 79, 93 
Double blind, 12 
Empty set, 44 
Error, 
 Type I, 122, 127, 195 
 Type II, 122 
Estimation, 102 
Events, 44 
 complementary, 50 
 conditional, 46 
 dependent, 186 
 independent, 54, 186 
 related, 186 
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Expected value, 72, 75 
Extrapolation, 170 
Factorial, 65 
Fair dice, 55, 180 
Five-number summary, 34 
Frequency, 13 
 expected, 177, 190 
 observed, 177 
 relative, 14 
Frequency distribution table 
 categorical, 13 
 grouped, 15 
Given, 53 
 formula, 54 
Goodness-of-fit tests, 176 
 left-tailed, 183 
 right-tailed, 179 
Histogram, 18 
Hypothesis,  
 alternative, 1H , 120 

 null, 0H , 120 
Hypothesis testing, 117 
Indirect proof, 127 
Inference, 8 
Inflection points, 83 
Interpolation, 170 
Interquartile range, 34 
Interval of data, 
 within one, two, three standard 
    deviations of the mean, 37 
Intervals, 
 open, 37 
 closed, 37 
Levels of measurement, 3, 8 
 interval, 4, 8 
 nominal, 3, 8 
 ordinal, 4, 8 
 ratio, 5, 8 
Lower limit, 15 
Margin of error, E, 103, 111 
Maximum, 23 
Maximum error of estimate, 103 
Mean, 22 
 grand, GMx , 197 
 population, µ , 24 

 sample, x , 23 
 weighted, 26 
 
Measure of  
 central tendency, 21 
 position, 21, 33 
 variation, 21, 28 
Median, 21 
Midrange, 23 
Minimum, 23 
Modal class, 21 
Mode, 21 
Multiplication rule of counting, 61 
Mutually exclusive, 53, 77 
Or, 52 
 exclusive, 52 
 formula, 53  
 inclusive, 52 
Outcome, 44 
Outliers, 35 
 lower and upper limits, 35 
p-value, 121, 127 
Parameter, 8 
Percentile, 34 
 first, 34 
Permutations, 64 
 number of, n items taken r at a 
   time, 64 
Placebo, 12 
Point estimate 
 for the population mean, 102 
 for the population  
  proportion, 111 
 for the predicted value, 165 
Polls, 113 
Pooled,  
 p, 155 
 standard deviations, 151 
Population, 8 
 parent, 91 
Population proportion, 111 
Population size, 24 
Positively correlated, 165 
Prediction, 161, 172 
 
Probability, 7 
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 classical, 45 
 conditional, 53 
 empirical, 47 
 joint, 53 
 of an event, 46 
 using counting rules, 67 
Probability density functions (pdf), 79 
 chi-squared, 2χ , 142 
 normal, 84 
 t, 106 
Probability distribution,  
 continuous, 79 
 discrete, 70 
  mean, 72 
  standard deviation, 74 
 uniform, 79 
Probability experiment, 44 
Proportion,  
 population, p, 111, 137 
 sample, p̂ , 111, 137 
Protocols, 47 
Protractor, 17 
Quartile, 
 first, 33 
 third, 33 
Range, 28, 196 
Regression, 161 
 exponential, 169  
 linear, 165 
 logarithmic, 168 
 logistic,  170 
 multiple, 174 
 quadratic, 166 
 simple, 174 
 sinusoidal, 167 
Regression line, 
 least-squares best-fit, 162 
Relationship, 
 multiple, 174 
 negative, 162 
 positive, 162 
 simple, 174 
Repetition, 
 without, 64 
 
Replacement, 

 with, 186 
 without, 187 
Residual, 163, 173 
Samples, 7 
 dependent, 149 
 independent, 149 
Sample size, 24, 108 
 formula for estimating  
  mean, 108 
 formula for estimating  
  proportion, 115 
Sample space, 44 
 size, 44 
Sampling, 10 
 cluster, 11 
 convenience, 11 
 random, 10 
 stratified, 11 
 systematic, 10 
Sampling distribution, 91 
Scatter plot, 19, 161 
Sigma, 13 
Significance level, α , 123, 126 
Significance testing, 117 
Sizes, 
 population, 24 
 sample, 24 
Slope of regression line, b, 162 
Standard deviation, 28 
 one above the mean, 36  
 one below the mean, 36 
 population, σ , 31, 74 
 sample, 30 
Standard error of the mean, 92, 127 
Standard score, 37 
Statistic, 7, 24 
 resistant, 24 
Statistics 
 definition, 7 
 descriptive, 6, 7 
 inferential, 8, 102 
Stem-and-leaf plots, 205 
Studies 
 experimental, 12 
 observational, 12 
Summarize the results, 128 
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t-distribution, 106 
Table method, 28 
Test value, 143 
 2χ formula, 145, 179 
 F formula, 197 
 
Testing claims, 102, 117 
 about the mean, 126 
 about the proportion, 137 
 about the standard deviation, 142 
 about two populations, 149 
  difference of means, 149 
  difference of  
        proportion, 154 
  difference of standard 
        deviation, 152 
 left-tailed, 121, 126, 146, 183 
 of goodness of fit, 176 
 of independence, 186 
 right-tailed, 121, 131, 138, 145, 
    179 
 two-tailed, 121, 142 
TInterval, 106 
Totals, 
 column, 50 
 grand, 50 
 row, 50 
Treatment group, 12 
Tree diagram, 61 
Trichotomy Property, 118, 128 
Truth table, 51 
Values, 7 
 
 

Variables, 1 
 binomial, 1 
 categorical, 1, 8 
 confounding, 12 
 continuous, 5, 9 
 counted, 5, 8 
 dependent, 12, 19, 161, 189 
 discrete, 6, 9, 70 
 explanatory, 12 
 independent, 12, 19, 161 
 measured, 5, 9 
 multinomial, 2, 176 
 outcome, 12 
 predictor, 161 
 qualitative, 1, 8 
 quantitative, 1, 8 
 random, 7, 70 
  discrete, 70 
  continuous, 70 
  normally distributed, 81 
 related, 189 
 response, 161 
Variance, 
 between groups, 2

Bs  196 
 population, 2σ , 30, 73, 146 
 sample, 2s , 28  
 within groups, 2

Ws ,  196 
What the claim leaves out, 119 
y-intercept, 162 
z-distribution, 104 
z-score, 36 

2
αz , 105

 
 

 
 

 
 

 

 

 


